期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Nanozyme‑Engineered Hydrogels for Anti‑Inflammation and Skin Regeneration 被引量:1
1
作者 Amal George Kurian Rajendra K.Singh +2 位作者 Varsha Sagar Jung‑Hwan Lee Hae‑Won Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期127-179,共53页
Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-... Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies. 展开更多
关键词 nanozymes HYDROGELS ROS scavenging ANTI-INFLAMMATION Skin regeneration
下载PDF
Deep Insight of Design,Mechanism,and Cancer Theranostic Strategy of Nanozymes 被引量:1
2
作者 Lu Yang Shuming Dong +6 位作者 Shili Gai Dan Yang He Ding Lili Feng Guixin Yang Ziaur Rehman Piaoping Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期165-217,共53页
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction... Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities. 展开更多
关键词 nanozymes Classification Prediction and design Catalytic mechanism Tumor theranostics
下载PDF
Dual‑Atom Nanozyme Eye Drops Attenuate Inflammation and Break the Vicious Cycle in Dry Eye Disease
3
作者 Dandan Chu Mengyang Zhao +8 位作者 Shisong Rong Wonho Jhe Xiaolu Cai Yi Xiao Wei Zhang Xingchen Geng Zhanrong Li Xingcai Zhang Jingguo Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期439-457,共19页
Dry eye disease(DED)is a major ocular pathology worldwide,causing serious ocular discomfort and even visual impairment.The incidence of DED is gradually increasing with the highfrequency use of electronic products.Alt... Dry eye disease(DED)is a major ocular pathology worldwide,causing serious ocular discomfort and even visual impairment.The incidence of DED is gradually increasing with the highfrequency use of electronic products.Although inflammation is core cause of the DED vicious cycle,reactive oxygen species(ROS)play a pivotal role in the vicious cycle by regulating inflammation from upstream.Therefore,current therapies merely targeting inflammation show the failure of DED treatment.Here,a novel dual-atom nanozymes(DAN)-based eye drops are developed.The antioxidative DAN is successfully prepared by embedding Fe and Mn bimetallic single-atoms in N-doped carbon material and modifying it with a hydrophilic polymer.The in vitro and in vivo results demonstrate the DAN is endowed with superior biological activity in scavenging excessive ROS,inhibiting NLRP3 inflammasome activation,decreasing proinflammatory cytokines expression,and suppressing cell apoptosis.Consequently,the DAN effectively alleviate ocular inflammation,promote corneal epithelial repair,recover goblet cell density and tear secretion,thus breaking the DED vicious cycle.Our findings open an avenue to make the DAN as an intervention form to DED and ROSmediated inflammatory diseases. 展开更多
关键词 Dry eye disease DAN Dual-atom nanozyme Vicious cycle NLRP3 inflammasome NANOMEDICINE
下载PDF
Biomimetic Integrated Nanozyme for Flare and Recurrence of Gouty Arthritis
4
作者 Rui Wang Tongyao Liu +8 位作者 Xinhong Li Enhao Lu Yiting Chen Kuankuan Luo Tao Wang Xueli Huang Zhiwen Zhang Shilin Du Xianyi Sha 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第3期131-145,共15页
Flare and multiple recurrences pose significant challenges in gouty arthritis.Traditional treatments provide temporary relief from inflammation but fail to promptly alleviate patient pain or effectively prevent subseq... Flare and multiple recurrences pose significant challenges in gouty arthritis.Traditional treatments provide temporary relief from inflammation but fail to promptly alleviate patient pain or effectively prevent subsequent recurrences.It should also be noted that both anti-inflammation and metabolism of uric acid are necessary for gouty arthritis,calling for therapeutic systems to achieve these two goals simultaneously.In this study,we propose a biomimetic integrated nanozyme,HMPB-Pt@MM,comprising platinum nanozyme and hollow Prussian blue.It demonstrates anti-inflammatory properties by eliminating reactive oxygen species and reducing infiltration of inflammatory macrophages.Additionally,it rapidly targets inflamed ankles through the camouflage of macrophage membranes.Furthermore,HMPB-Pt@MM exhibits urate oxidase-like capabilities,continuously metabolizing locally elevated uric acid concentrations,ultimately inhibiting multiple recurrences of gouty arthritis.In summary,HMPB-Pt@MM integrates ROS clearance with uric acid metabolism,offering a promising platform for the treatment of gouty arthritis. 展开更多
关键词 Gouty arthritis INFLAMMATION nanozyme PLATINUM Prussian blue
下载PDF
Aptasensing biosynthesized phosphatidylserine with a AuNPs nanozyme-based colorimetric aptasensor
5
作者 Sai Wang Rui Ma +4 位作者 Chengqiang Li Ling Zhang Haiyang Zhang Xuehan Li Xiangzhao Mao 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期823-829,共7页
Sensitive monitoring of the target products during the biosynthesis process is crucial,and facile analytical approaches are urgently needed.Herein,phosphatidylserine(PS)was chosen as the model target,a colorimetric ap... Sensitive monitoring of the target products during the biosynthesis process is crucial,and facile analytical approaches are urgently needed.Herein,phosphatidylserine(PS)was chosen as the model target,a colorimetric aptasensor was developed for the rapid quantitation in biosynthesis samples.A chimeric aptamer was constructed with two homogeneous original PS aptamers.Specific recognition between the chimeric aptamer and PS results in the desorption of aptamer from the surface of the AuNPs nanozyme,and the peroxidase-like enzymatic activity of the AuNPs nanozyme was weakened in a relationship with the different concentrations.The developed aptasensor performed well when applied for analyzing PS in biosynthesis samples.The aptasensor offers good sensitivity and selectivity,under optimal conditions,achieving monitoring and quantitation of PS in the range of 2.5-80.0μmol/L,with a limit of detection at 536.2 nmol/L.Moreover,the aptasensor provides good accuracy,with comparison rates of 98.17%-106.40%,when compared with the HPLC-ELSD.This study provides a good reference for monitoring other biosynthesized products and promoting the development of aptamers and aptasensors in real-world applications. 展开更多
关键词 PHOSPHATIDYLSERINE Chimeric aptamer AuNPs nanozyme Colorimetric aptasensor
下载PDF
A Review on Metal-and Metal Oxide-Based Nanozymes:Properties,Mechanisms,and Applications 被引量:28
6
作者 Qianwen Liu Amin Zhang +2 位作者 Ruhao Wang Qian Zhang Daxiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期147-199,共53页
Since the ferromagnetic(Fe_(3)O_(4))nanoparticles were firstly reported to exert enzyme-like activity in 2007,extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rap... Since the ferromagnetic(Fe_(3)O_(4))nanoparticles were firstly reported to exert enzyme-like activity in 2007,extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies.As promising alterna-tives for natural enzymes,nanozymes have broadened the way toward clinical medicine,food safety,environmental monitoring,and chemical production.The past decade has witnessed the rapid development of metal-and metal oxide-based nanozymes owing to their remarkable physicochemical proper-ties in parallel with low cost,high stability,and easy storage.It is widely known that the deep study of catalytic activities and mechanism sheds sig-nificant influence on the applications of nanozymes.This review digs into the characteristics and intrinsic properties of metal-and metal oxide-based nanozymes,especially emphasizing their catalytic mechanism and recent applications in biological analysis,relieving inflammation,antibacterial,and cancer therapy.We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials. 展开更多
关键词 Metal-and metal oxide-based nanozymes Intrinsic properties Catalytic mechanism Applications
下载PDF
Nanozymes:Versatile Platforms for Cancer Diagnosis and Therapy 被引量:9
7
作者 Xiaodong Zhang Xiaokai Chen Yanli Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期165-191,共27页
Natural enzymes usually suffer from high production cost,ease of denaturation and inactivation,and low yield,making them difficult to be broadly applicable.As an emerging type of artificial enzyme,nanozymes that combi... Natural enzymes usually suffer from high production cost,ease of denaturation and inactivation,and low yield,making them difficult to be broadly applicable.As an emerging type of artificial enzyme,nanozymes that combine the characteristics of nanomaterials and enzymes are promising alternatives.On the one hand,nanozymes have high enzyme-like catalytic activities to regulate biochemical reactions.On the other hand,nanozymes also inherit the properties of nanomaterials,which can ameliorate the shortcomings of natural enzymes and serve as versatile platforms for diverse applications.In this review,various nanozymes that mimic the catalytic activity of different enzymes are introduced.The achievements of nanozymes in different cancer diagnosis and treatment technologies are summarized by highlighting the advantages of nanozymes in these applications.Finally,future research directions in this rapidly developing field are outlooked. 展开更多
关键词 Cancer theranostics Catalytic therapy Enzyme mimics nanozymes Smart nanomedicine
下载PDF
Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect 被引量:3
8
作者 Yuzhou Sun Jinchao Wei +7 位作者 Jian Zou Zehua Cheng Zhongming Huang Liqiang Gu Zhangfeng Zhong Shengliang Li Yitao Wang Peng Li 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第5期653-660,共8页
A new electrochemical sensor for organophosphate pesticide(methyl-paraoxon)detection based on bifunctional cerium oxide(CeO_(2))nanozyme is here reported for the first time.Methyl-paraoxon was degraded into p-nitrophe... A new electrochemical sensor for organophosphate pesticide(methyl-paraoxon)detection based on bifunctional cerium oxide(CeO_(2))nanozyme is here reported for the first time.Methyl-paraoxon was degraded into p-nitrophenol by using CeO_(2) with phosphatase mimicking activity.The CeO_(2) nanozymemodified electrode was then synthesized to detect p-nitrophenol.Cyclic voltammetry was applied to investigate the electrochemical behavior of the modified electrode,which indicates that the signal enhancement effect may attribute to the coating of CeO_(2) nanozyme.The current research also studied and discussed the main parameters affecting the analytical signal,including accumulation potential,accumulation time,and pH.Under the optimum conditions,the present method provided a wider linear range from 0.1 to 100 mmol/L for methyl-paraoxon with a detection limit of 0.06 mmol/L.To validate the proof of concept,the electrochemical sensor was then successfully applied for the determination of methyl-paraoxon in three herb samples,i.e.,Coix lacryma-jobi,Adenophora stricta and Semen nelumbinis.Our findings may provide new insights into the application of bifunctional nanozyme in electrochemical detection of organophosphorus pesticide. 展开更多
关键词 Chinese medicine nanozyme ORGANOPHOSPHORUS Pesticide Methyl-paraoxon ELECTROANALYSIS
下载PDF
A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy 被引量:5
9
作者 Xi Hu Nan Wang +8 位作者 Xia Guo Zeyu Liang Heng Sun Hongwei Liao Fan Xia Yunan Guan Jiyoung Lee Daishun Ling Fangyuan Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期282-293,共12页
The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes.However,there is virtually no artificial nanozyme reported that can achieve natural ... The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes.However,there is virtually no artificial nanozyme reported that can achieve natural enzyme-like stringent spatiotemporal structure-based catalytic activity regulation.Here,we report a subnanostructural transformable gold@ceria(STGC-PEG)nanozyme that performs tunable catalytic activities via near-infrared(NIR)light-mediated sub-nanostructural transformation.The gold core in STGC-PEG can generate energetic hot electrons upon NIR irradiation,wherein an internal sub-nanostructural transformation is initiated by the conversion between CeO;and electron-rich state of CeO;-x,and active oxygen vacancies generation via the hot-electron injection.Interestingly,the sub-nanostructural transformation of STGC-PEG enhances peroxidase-like activity and unprecedentedly activates plasmon-promoted oxidase-like activity,allowing highly efficient low-power NIR light(50 m W cm;)-activated photocatalytic therapy of tumors.Our atomic-level design and fabrication provide a platform to precisely regulate the catalytic activities of nanozymes via a light-mediated sub-nanostructural transformation,approaching natural enzyme-like activity control in complex living systems. 展开更多
关键词 nanozymes Sub-nanostructural transformation Catalytic activity Reactive oxygen species Photocatalytic therapy
下载PDF
A Rational Design of Metal–Organic Framework Nanozyme with High‑Performance Copper Active Centers for Alleviating Chemical Corneal Burns 被引量:3
10
作者 Yonghua Tang Yi Han +7 位作者 Jiachen Zhao Yufei Lv Chaoyu Fan Lan Zheng Zhisen Zhang Zuguo Liu Cheng Li Youhui Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期49-71,共23页
Metal–organic frameworks(MOFs)have attracted significant research interest in biomimetic catalysis.However,the modulation of the activity of MOFs by precisely tuning the coordination of metal nodes is still a signifi... Metal–organic frameworks(MOFs)have attracted significant research interest in biomimetic catalysis.However,the modulation of the activity of MOFs by precisely tuning the coordination of metal nodes is still a significant challenge.Inspired by metalloenzymes with well-defined coordination structures,a series of MOFs containing halogen-coordinated copper nodes(Cu-X MOFs,X=Cl,Br,I)are employed to elucidate their structure–activity relationship.Intriguingly,experimental and theoretical results strongly support that precisely tuning the coordination of halogen atoms directly regulates the enzyme-like activities of Cu-X MOFs by influencing the spatial configuration and electronic structure of the Cu active center.The optimal Cu–Cl MOF exhibits excellent superoxide dismutase-like activity with a specific activity one order of magnitude higher than the reported Cu-based nanozymes.More importantly,by performing enzyme-mimicking catalysis,the Cu–Cl MOF nanozyme can significantly scavenge reactive oxygen species and alleviate oxidative stress,thus effectively relieving ocular chemical burns.Mechanistically,the antioxidant and antiapoptotic properties of Cu–Cl MOF are achieved by regulating the NRF2 and JNK or P38 MAPK pathways.Our work provides a novel way to refine MOF nanozymes by directly engineering the coordination microenvironment and,more significantly,demonstrating their potential therapeutic effect in ophthalmic disease. 展开更多
关键词 Metal-organic frameworks nanozyme Superoxide dismutase HALOGEN Chemical ocular burn Corneal diseases
下载PDF
Inorganic Nanozyme with Combined Self-Oxygenation/Degradable Capabilities for Sensitized Cancer Immunochemotherapy 被引量:2
11
作者 Jie Wang Lan Fang +5 位作者 Ping Li Lang Ma Weidan Na Chong Cheng Yueqing Gu Dawei Deng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期308-325,共18页
Recently emerged cancer immunochemotherapy has provided enormous new possibilities to replace traditional chemotherapy in fighting tumor.However,the treatment efficacy is hampered by tumor hypoxiainduced immunosuppres... Recently emerged cancer immunochemotherapy has provided enormous new possibilities to replace traditional chemotherapy in fighting tumor.However,the treatment efficacy is hampered by tumor hypoxiainduced immunosuppression in tumor microenvironment(TME).Herein,we fabricated a self-oxygenation/degradable inorganic nanozyme with a core-shell structure to relieve tumor hypoxia in cancer immunochemotherapy.By integrating the biocompatible CaO2 as the oxygen-storing component,this strategy is more effective than the earlier designed nanocarriers for delivering oxygen or H2O2,and thus provides remarkable oxygenation and long-term capability in relieving hypoxia throughout the tumor tissue.Consequently,in vivo tests validate that the delivery system can successfully relieve hypoxia and reverse the immunosuppressive TME to favor antitumor immune responses,leading to enhanced chemoimmunotherapy with cytotoxic T lymphocyte-associated antigen 4 blockade.Overall,a facile,robust and effective strategy is proposed to improve tumor oxygenation by using self-decomposable and biocompatible inorganic nanozyme reactor,which will not only provide an innovative pathway to relieve intratumoral hypoxia,but also present potential applications in other oxygen-favored cancer therapies or oxygen deficiency-originated diseases. 展开更多
关键词 Inorganic nanozyme Self-oxygenation NANOREACTOR Biodegradable nanomedicine IMMUNOCHEMOTHERAPY CANCER treatment
下载PDF
Gold Nanozymes:From Concept to Biomedical Applications 被引量:2
12
作者 Javier Lou‑Franco Bhaskar Das +1 位作者 Christopher Elliott Cuong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期138-173,共36页
In recent years,gold nanoparticles have demonstrated excellent enzyme-mimicking activities which resemble those of peroxidase,oxidase,catalase,superoxide dismutase or reductase.This,merged with their ease of synthesis... In recent years,gold nanoparticles have demonstrated excellent enzyme-mimicking activities which resemble those of peroxidase,oxidase,catalase,superoxide dismutase or reductase.This,merged with their ease of synthesis,tunability,biocompatibility and low cost,makes them excellent candidates when compared with biological enzymes for applications in biomedicine or biochemical analyses.Herein,over 200 research papers have been systematically reviewed to present the recent progress on the fundamentals of gold nanozymes and their potential applications.The review reveals that the morphology and surface chemistry of the nanoparticles play an important role in their catalytic properties,as well as external parameters such as pH or temperature.Yet,real applications often require specific biorecognition elements to be immobilized onto the nanozymes,leading to unexpected positive or negative effects on their activity.Thus,rational design of efficient nanozymes remains a challenge of paramount importance.Different implementation paths have already been explored,including the application of peroxidase-like nanozymes for the development of clinical diagnostics or the regulation of oxidative stress within cells via their catalase and superoxide dismutase activities.The review also indicates that it is essential to understand how external parameters may boost or inhibit each of these activities,as more than one of them could coexist.Likewise,further toxicity studies are required to ensure the applicability of gold nanozymes in vivo.Current challenges and future prospects of gold nanozymes are discussed in this review,whose significance can be anticipated in a diverse range of fields beyond biomedicine,such as food safety,environmental analyses or the chemical industry. 展开更多
关键词 Gold nanoparticles CATALYSIS nanozymes DIAGNOSIS NANOMEDICINE
下载PDF
MXene-Based Composites as Nanozymes in Biomedicine: A Perspective 被引量:2
13
作者 Siavash Iravani Rajender S.Varma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期447-463,共17页
MXene-based nanozymes have garnered considerable attention because of their potential environmental and biomedical applications.These materials encompass alluring and manageable catalytic performances and physicochemi... MXene-based nanozymes have garnered considerable attention because of their potential environmental and biomedical applications.These materials encompass alluring and manageable catalytic performances and physicochemical features,which make them suitable as(bio)sensors with high selectivity/sensitivity and efficiency.MXene-based structures with suitable electrical conductivity,biocompatibility,large surface area,optical/magnetic properties,and thermal/mechanical features can be applied in designing innovative nanozymes with area-dependent electrocatalytic performances.Despite the advances made,there is still a long way to deploy MXene-based nanozymes,especially in medical and healthcare applications;limitations pertaining the peroxidaselike activity and sensitivity/selectivity may restrict further practical applications of pristine MXenes.Thus,developing an efficient surface engineering tactic is still required to fabricate multifunctional MXene-based nanozymes with excellent activity.To obtain MXene-based nanozymes with unique physicochemical features and high stability,some crucial steps such as hybridization and modification ought to be performed.Notably,(nano)toxicological and long-term biosafety analyses along with clinical translation studies still need to be comprehensively addressed.Although very limited reports exist pertaining to the biomedical potentials of MXene-based nanozymes,the future explorations should transition toward the extensive research and detailed analyses to realize additional potentials of these structures in biomedicine with a focus on clinical and industrial aspects.In this perspective,therapeutic,diagnostic,and theranostic applications of MXene-based nanozymes are deliberated with a focus on future per-spectives toward more successful clinical translational studies.The current state-of-the-art biomedical advances in the use of MXene-based nanozymes,as well as their developmental challenges and future prospects are also highlighted.In view of the fascinating properties of MXene-based nanozymes,these materials can open significant new opportunities in the future of bio-and nanomedicine. 展开更多
关键词 MXenes MXene-based nanozymes THERAPEUTICS Diagnostics THERANOSTICS
下载PDF
Nanozymes in Point-of-Care Diagnosis:An Emerging Futuristic Approach for Biosensing 被引量:2
14
作者 Bhaskar Das Javier Lou Franco +3 位作者 Natasha Logan Paramasivan Balasubramanian Moon Il Kim Cuong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期44-94,共51页
Nanomaterial-based artificial enzymes(or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the nat... Nanomaterial-based artificial enzymes(or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes.Numerous advantages of nanozymes such as diverse enzyme-mimicking activities,low cost,high stability,robustness,unique surface chemistry,and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal,metal oxide,metal–organic framework-based nanozymes have been exploited for the development of biosensing systems,which present the potential for point-of-care analysis. To highlight recent progress in the field,in this review,more than 260 research articles are discussed systematically with suitable recent examples,elucidating the role of nanozymes to reinforce,miniaturize,and improve the performance of point-of-care diagnostics addressing the ASSURED(a ordable,sensitive,specific,user-friendly,rapid and robust,equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical,colorimetric,fluorescent,and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However,basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size,shape,composition,surface charge,surface chemistry as well as external parameters such as pH or temperature,these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore,it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications. 展开更多
关键词 nanozymes BIOSENSING Point-of-care diagnosis ASSURED diagnostics Catalytic nanomaterials
下载PDF
A Label-Free Colorimetric Aptasensor Containing DNA Triplex Molecular Switch and AuNP Nanozyme for Highly Sensitive Detection of Saxitoxin
15
作者 QI Xiaoyan LI Ling +5 位作者 YAN Xiaochen ZHAO Yinglin WANG Lele MA Rui WANG Sai MAO Xiangzhao 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第5期1343-1350,共8页
Saxitoxin(STX),one of the most toxic paralytic shellfish poisons discovered to date,is listed as a required item of aquatic product safety inspection worldwide.However,conventional detection methods for STX are limite... Saxitoxin(STX),one of the most toxic paralytic shellfish poisons discovered to date,is listed as a required item of aquatic product safety inspection worldwide.However,conventional detection methods for STX are limited by various issues,such as low sensitivity,complicated operations,and ethical considerations.In this study,an aptamer-triplex molecular switch(APT-TMS)and gold nanoparticle(AuNP)nanozyme were combined to develop a label-free colorimetric aptasensor for the rapid and highly sensitive de-tection of STX.An anti-STX aptamer designed with pyrimidine arms and a purine chain was fabricated to form an APT-TMS.Specific binding between the aptamer and STX triggered the opening of the switch,which causes the purine chains to adsorb onto the surface of the AuNPs and enhances the peroxidase-like activity of the AuNP nanozyme toward 3,3’,5,5’-tetramethylbenzidine.Under optimized conditions,the proposed aptasensor showed high sensitivity and selectivity for STX,with a limit of detection of 335.6 pmol L^(−1) and a linear range of 0.59-150 nmol L^(−1).Moreover,good recoveries of 82.70%-92.66%for shellfish and 88.97%-106.5%for seawater were obtained.The analysis could be completed within 1 h.The proposed design also offers a robust strategy to achieve detection of other marine toxin targets by altering the corresponding aptamers. 展开更多
关键词 SAXITOXIN colorimetric aptasensor APTAMER triplex molecular switch AuNP nanozyme
下载PDF
A Novel Method Using Flower-like Manganese Oxide Nanozymes for Colorimetric Detection of Ascorbic Acid
16
作者 Sirui Li Haixin Tan 《Journal of Clinical and Nursing Research》 2020年第1期21-23,共3页
This paper proposes a method of utilizing a flower-like MnOx nanozyme to conduct a colorimetric detection of ascorbic acid.The nanozyme is obtained by a chain of reaction of K3[Fe(CN)6],MnSO4·H2O,polyvinyl pyrrol... This paper proposes a method of utilizing a flower-like MnOx nanozyme to conduct a colorimetric detection of ascorbic acid.The nanozyme is obtained by a chain of reaction of K3[Fe(CN)6],MnSO4·H2O,polyvinyl pyrrolidone(PVP),NH4F,ethanol,and water.During the experimental process,the flower-like nanozyme is added to the mixed solution,including phosphate buffer,H2O2,and 3,3’,5,5’-tetramethylbe nzidine(TMB).The optimum reaction condition as following:pH 3.0,30μL 500mM H2O2,25μL 92 mM TMB,and 30μL 0.1mM nanozyme.Under the optimum condition,the detection range is 2-26mM,and the linear detection range is 2-20mM. 展开更多
关键词 COLORIMETRIC detection Ascorbic ACID FLOWER-LIKE MANGANESE OXIDE nanozymes
下载PDF
Design of a nanozyme-based magnetic nanoplatform to enhance photodynamic therapy and immunotherapy
17
作者 Chen Bai Jiajing Liu +4 位作者 Luyao Bai Dapeng Yao Xiaofeng Li Haoran Zhang Dong Guo 《Journal of Pharmaceutical Analysis》 SCIE CAS 2024年第9期1320-1329,共10页
The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatf... The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatform (MNPT) comprised of a photosensitizer (Ce6) and an iron oxide (Fe3O4)/manganese oxide (MnO2) composite nanozyme. Reactive oxygen species (ROS), such as singlet oxygen (1O2) radicals produced by light irradiation and hydroxyl radicals (·OH) produced by catalysis, are therapeutic species. These therapeutic substances stimulate cell apoptosis by increasing oxidative stress. This apoptosis then triggers the immunological response, which combines photodynamic therapy and T-cell-mediated immunotherapy to treat cancer. Furthermore, MNPT can be utilized as a contrast agent in magnetic resonance and fluorescence dual-modality imaging to give real-time tracking and feedback on treatment. 展开更多
关键词 nanozyme Photodynamic therapy Tumor microenvironment Immunotherapy Dual-mode tomography
下载PDF
Universal antibacterial and anti-inflammatory treatment using chitosan-prussian blue nanozyme
18
作者 Jian Wang Jiayi Wang +11 位作者 Huayuan Zhou Rui Ma Zhou Fang Jiawei Zhu Zhejie Chen Xinfeng Dai Dali Wei Jiabei Li Yiting Jiang Qian Xia Xueliang Liu Yu Yang 《EngMedicine》 2024年第1期35-45,共11页
Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chi... Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chitosan-Prussian blue nanozyme(CS@PB),a non-antibiotic agent,for universal antibacterial and antiinflammatory treatment of bacterial infections.Confocal microscopy images showed that CS@PB significantly enhanced the physical interaction between chitosan and bacteria,thereby increasing the antibacterial ability.Moreover,these nanozymes exhibited potent antioxidant and anti-inflammatory properties,promoting macrophage polarization toward the M2-like phenotype,reducing oxidative stress,and alleviating inflammation.This dual-action approach effectively accelerates the healing of bacteria-infected inflammatory wounds.The synergistic bactericidal and anti-inflammatory properties of CS@PBs inhibited wound infection and promoted the healing of skin infections in a mouse model.In addition,CS@PB displayed remarkable lung retention and potent bactericidal effects,resulting in significantly improved survival rates in mouse models of acute pulmonary bacterial infections.In conclusion,CS@PBs exhibited exceptional bactericidal capabilities,anti-inflammatory properties,and minimal toxicity,suggesting that they are promising candidates for a new generation of non-antibiotic antimicrobial agents for the treatment of bacterial infections. 展开更多
关键词 Antibacterial Anti-inflammatory nanozyme Wound healing Acute lung injury
下载PDF
Highly sensitive nanozyme strip:An effective tool for forensic material evidence identification 被引量:3
19
作者 Juanji Hong Zhanjun Guo +10 位作者 Dihan Duan Yi Zhang Xin Chen Yongjiu Li Zheng Tu Lei Feng Lei Chen Xiyun Yan Lizeng Gao Minmin Liang Demin Duan 《Nano Research》 SCIE EI CSCD 2024年第3期1785-1791,共7页
During criminal case investigations,blood evidence tracing is critical for criminal investigation.However,the blood stains are often cleaned or covered up after the crime,resulting in trace residue and difficult track... During criminal case investigations,blood evidence tracing is critical for criminal investigation.However,the blood stains are often cleaned or covered up after the crime,resulting in trace residue and difficult tracking.Therefore,a highly sensitive and specific method for the rapid detection of human blood stains remains urgent.To solve this problem,we established a nanozyme-based strip for rapid detection of blood evidence with high sensitivity and specificity.To construct reliable nanozyme strips,we synthesized CoFe_(2)O_(4) nanozymes with high peroxidase-like activity by scaling up to gram level,which can be supplied for six million tests,and conjugated antibody as a detection probe in nanozyme strip.The developed CoFe_(2)O_(4) nanozyme strip can detect human hemoglobin(HGB)at a concentration as low as 1 ng/mL,which is 100 times lower than the commercially available colloidal gold strips(100 ng/mL).Moreover,this CoFe_(2)O_(4) nanozyme strip showed high generality on 12 substrates and high specificity to human HGB among 13 animal blood samples.Finally,we applied the developed CoFe_(2)O_(4) nanozyme strip to successfully detect blood stains in three real cases,where the current commercial colloidal gold strip failed to do.The results suggest that the CoFe_(2)O_(4) nanozyme strip can be used as an effective on-scene detection method for human blood stains,and can further be used as a long-term preserved material evidence for traceability inquiry. 展开更多
关键词 CoFe_(2)O_(4)nanozyme nanozyme strip peroxidase-like activity human hemoglobin blood evidence
原文传递
Catalysis driven by biohybrid nanozyme
20
作者 Li Zuo Mohammad Akter Hossain +2 位作者 Bishal Pokhrel Wei-Shun Chang Hao Shen 《Advanced Sensor and Energy Materials》 2022年第3期47-60,共14页
Nanozymes,a class of nanomaterials that exhibit enzyme-like characteristics in catalysis,have been booming over decades.They feature unique properties,such as low cost,high chemical stability,easy storage,and highly t... Nanozymes,a class of nanomaterials that exhibit enzyme-like characteristics in catalysis,have been booming over decades.They feature unique properties,such as low cost,high chemical stability,easy storage,and highly tunable reactivity.Nanozymes with biomolecule modifications received the most attention because of their high biocompatibility and better natural enzyme-mimicking.With their unique physicochemical properties,these biomolecule nanohybrids have been used in a variety of applications.Hence,we highlight the current progress for“biohybrid nanozymes”in this review.The synthesis,composition,and catalytic performances of different biohybrid nanozymes are discussed.We expect that biohybrid nanozymes will attract broad interest in fundamental research and practical applications. 展开更多
关键词 Biohybrid nanozymes Enzyme-mimics Nanozymology Catalysis Bio-applications
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部