期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Nanoscale Zero-Valent Iron(nZVI)for Heavy Metal Wastewater Treatment:A Perspective
1
作者 Shaolin Li Lei Li Weixian Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第5期16-20,共5页
Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harmi... Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste. 展开更多
关键词 Nanoscale zero-valent iron WASTEWATER Heavy metal Resource recovery
下载PDF
Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions 被引量:6
2
作者 Akbar Soliemanzadeh Majid Fekri 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第7期924-930,共7页
This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of pho... This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of phosphorus from aqueous solutions at various concentrations, p H levels and contact time. The desorption of phosphorus(P) from adsorbents was done immediately after sorption at the maximum initial concentration using the successive dilution method. The characterization of FTIR, SEM, and XRD indicated that n ZVI was successfully loaded to the surface of natural bentonite. The sorption of phosphorus on B-n ZVI was observed to be p H-dependent, with maximum phosphorus removal occurring at the p H range of 2 to 5. The results demonstrate that the maximum sorption capacities of natural bentonite and B-n ZVI were 4.61 and 27.63 mg·g^(-1), respectively.Langmuir, Freundlich, and Redlich–Peterson models properly described the sorption isotherm data. For either adsorbent, desorption isotherms did not coincide with their corresponding sorption isotherms, suggesting the occurrence of irreversibility and hysteresis. The average percentages of retained phosphorus released from natural bentonite and B-n ZVI were 80% and 9%, respectively. The results indicated that sorption kinetics was best described by the pseudo-second-order model. The present study suggests that B-n ZVI could be used as a suitable adsorbent for the removal of phosphorus from aqueous solutions. 展开更多
关键词 Green tea Nano zero-valent iron Natural bentonite PHOSPHORUS SORPTION
下载PDF
Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite 被引量:6
3
作者 Jie Fu Zhen Xu +4 位作者 Qing-Shan Li Song Chen Shu-Qing An Qing-Fu Zeng Hai-Liang Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期512-518,共7页
A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and th... A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency. 展开更多
关键词 activated carbon microwave discharge electrodeless lamp Reactive Red 195 sodium hypochlorite zero-valent iron.
下载PDF
Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay 被引量:1
4
作者 Shaimaa T.Kadhum Ghayda Yassen Alkindi Talib M.Albayati 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期19-28,共10页
The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanopartic... The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanoparticle zerovalent iron was synthesized using natural silty clay as a support material(SC-NZVI).The NZVI and SC-NZVI were characterized by infrared spectroscopy(FTIR),scanning electron microscope(SEM),X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET),and zeta potential(ζ).The interpretation of the results demonstrated that the polyphenol and other antioxidants in green tea waste can be used as reduction and capping agents in NZVI synthesis,with silty clay an adequate support.Additionally,the experiments were carried out to explore phenol adsorption by NZVI and SC-NZVI.To determine the optimum conditions,the impact of diverse experimental factors(i.e.,initial pH,adsorbent dose,temperature,and concentration of phenol)was studied.Langmuir,Freundlich,and Tempkin isotherms were used as representatives of adsorption equilibrium.The obtained results indicated that the adsorption processes for both NZVI and SC-NZVI well fitted by the Freundlich isotherm model.The appropriateness of pseudofirstorder and pseudosecondorder kinetics was investigated.The experimental kinetics data were good explained by the second-order model.The thermodynamic parameters(ΔH0,ΔS0,andΔG0)for NZVI and SC-NZVI were determined.The maximum removal rates of phenol at optimum conditions,when adsorbed onto NZVI and SC-NZVI,were found to be 94.8%and 90.1%,respectively. 展开更多
关键词 Wastewater treatment Environment Nano zero-valent iron Silty clay PHENOL Adsorption
下载PDF
Biochar Supported Nanoscale Zero-valent Iron Composites for the Removal of Petroleum from Wastewater 被引量:2
5
作者 Qin Feifei Xu Wenfei +3 位作者 Hao Boyu Yin Linghao Song Jiayu Zhang Xiuxia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第4期47-57,共11页
Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(... Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(SMS),to produce an iron-carbon composite(SMS-nZVI).The ability of the SMS-nZVI to treat wastewater containing high concentration of oil was then comprehensively evaluated.The morphology,structure,and other properties of the composite were characterized by using scanning electron microscopy,transmission electron microscopy,the Brunauer-Emmett-Teller nitrogen sorption analysis,and the Fourier transform infrared spectroscopy.The results show that the biochar prepared by using the SMS can effectively prevent the agglomeration of nZVI and increase the overall specific surface area,thereby enhancing the absorption of petroleum by the composite.Experiments reveal that compared with the SMS and nZVI,the SMS-nZVI composite removes petroleum faster and more efficiently from wastewater.Under optimized conditions involving an nZVI to biochar mass ratio of 1:5 and a pH value of 4,the efficiency for removal of petroleum from wastewater with an initial petroleum concentration of 1000 mg/L could reach 95%within 5 h.Based on a natural aging treatment involving exposure to air for 30 d,the SMS-nZVI composite retained an oil removal rate of higher than 62%,and this result could highlight its stability for practical applications. 展开更多
关键词 oily wastewater nanoscale zero-valent iron(nZVI) spent mushroom substrate(SMS) SMS-nZVI composite
下载PDF
Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater 被引量:2
6
作者 Wen Liang Nian-qing Zhou +3 位作者 Chao-meng Dai Yan-ping Duan Lang Zhou Yao-jen Tu 《Journal of Groundwater Science and Engineering》 2021年第3期171-180,共10页
Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF d... Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF degradation by the combined process of zero-valent iron nanoparticles(nZVI)and nano calcium peroxide(nCaO_(2))were performed.A batch experiment was conducted to examine the influence of the adding dosages of both nZVI and nCaO_(2)nanoparticles and pH value on the DCF removal.In the meantime,the continuous-flow experiment was done to explore the sustainability of the DCF degradation by jointly adding nZVI/nCaO_(2)nanoparticles in the reaction system.The results show that the nZVI/nCaO_(2)can effectively remove the DCF in the batch test with only 0.05 g/L nZVI and 0.2 g/L nCaO_(2)added,resulting in a removal rate of greater than 90%in a 2-hour reaction with an initial pH of 5.The degradation rate of DCF was positively correlated with the dosage of nCaO_(2),and negatively correlated with both nZVI dosage and the initial pH value.The order of significance of the three factors is identified as pH value>nZVI dosage>nCaO_(2)dosage.In the continuous-flow reaction system,the DCF removal rates remained above 75%within 150 minutes at the pH of 5,with the applied dosages of 0.5 g/L for nZVI and 1.0 g/L for nCaO_(2).These results provide a theoretical basis for the nZVI/nCaO_(2)application to remove DCF in groundwater. 展开更多
关键词 Nanoscale zero-valent iron(nZVI) Nano calcium peroxide(nCaO_(2)) DICLOFENAC Fenton-like reaction Groundwater pollution
下载PDF
Enhanced degradation of carbon tetrachloride by surfactant-modified zero-valent iron
7
作者 MENG Ya-feng GUAN Bao-hong WU Zhong-biao WANG Da-hui 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第9期702-707,共6页
Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVl is of great importance. This experiment was aimed at enhancing th... Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVl is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation. 展开更多
关键词 Enhanced degradation SORPTION SURFACTANTS Synergistic effect zero-valent iron (ZVI)
下载PDF
H<sub>2</sub>Gas Charging of Zero-Valent Iron and TCE Degradation
8
作者 Chen Zhao Eric J. Reardon 《Journal of Environmental Protection》 2012年第3期272-279,共8页
Granular zero-valent iron (ZVI) has been widely used to construct permeable reactive barriers (PRB) for the in situ remediation of groundwater contaminated with halogenated hydrocarbons. In the anaerobic condition of ... Granular zero-valent iron (ZVI) has been widely used to construct permeable reactive barriers (PRB) for the in situ remediation of groundwater contaminated with halogenated hydrocarbons. In the anaerobic condition of most groundwater flow systems, iron undergoes corrosion by water and results in hydrogen gas generation. Several studies have shown that some of the hydrogen gas generated at the iron/water interface can diffuse into the iron lattice. Hydrogen gas also can be an electron donor for dechlorination of chlorinated compounds. In this study, the possibility of hydrogen gas bound in the lattice of ZVI playing a role in dehalogenation and improving the degradation efficiency of ZVI was evaluated. Two different granular irons were tested: one obtained from Quebec Metal Powders Ltd (QMP) and the other from Connelly-GPM. Ltd. For each type of iron, two samples were mixed with water and sealed in testing cells. Since the rate of hydrogen entry varies directly with the square root of the hydrogen pressure, one sample was maintained for several weeks under near-vacuum conditions to minimize the amount of hydrogen entering the iron lattice. The other sample was maintained for the same period at a hydrogen pressure of over 400 kPa to maximize the amount of hydrogen entering the iron lattice. The degradation abilities of the reacted ironsand the original iron materials were tested by running several sets of batch tests. The results of this study show little to no improvement of inorganic TCE degradation reactions due to the presence of lattice-stored hydrogen in iron material. This is probably due to the high energiesrequired to release hydrogen trapped in the iron lattice. However, there are certain chemical compounds that can promote hydrogen release from the iron lattice, and there may be bacteria that can utilize lattice-bound hydrogen to carry out dechlorination reactions. 展开更多
关键词 GRANULAR zero-valent iron Hydrogen TCE REMEDIATION GROUNDWATER
下载PDF
Remediation of Nitrate and ChromiumContaminated Groundwater by Zero-valent IronPRB
9
《环境科学前沿(中英文版)》 2015年第2期39-45,共7页
Through continuous flow experimentation, the reactivity characteristics of zero-valent iron (Fe0)-PRB with ground watercontaminated by nitrate, chromium and the combination of nitrate and chromium were investigated.... Through continuous flow experimentation, the reactivity characteristics of zero-valent iron (Fe0)-PRB with ground watercontaminated by nitrate, chromium and the combination of nitrate and chromium were investigated. The results showed thatnitrate could be effectively deoxidized by zero-valent iron. NO^2- -N was the transitional deoxidization product, while NH4+-Nwas the main final product in the effluent. Chromium could be deoxidized by zero-valent iron more effectively for the chromiumcontaminated ground water which was treated by PRB. The redox products such as Fe3+ and Cr(III) precipitated on the packingmedia during the process. For the treatment of ground water contaminated by both nitrate and chromium, the results showed thatthe Cr(VI) removal efficiency by the zero-valent iron was not affected by the co-existence of NO^3- -N, while the NO^3- -N removalefficiency decreased with the existence of Cr(VI). 展开更多
关键词 zero-valent iron PERMEABLE Reactive Barrier(PRB) Ground Water NITRATE CHROMIUM
下载PDF
Corrosion behaviors and kinetics of nanoscale zero-valent iron in water:A review 被引量:2
10
作者 Chenliu Tang Xingyu Wang +2 位作者 Yufei Zhang Nuo Liu Xiang Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期391-406,共16页
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing... Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications.Herein,this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water.Firstly,Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion.The morphological,structural,and compositional evolution of(modified-)nZVI under different environmental conditions,assisted with microscopic and spectroscopic evidence,is then summarized.Afterwards,common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water.Specifically,stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed,emphasizing their capabilities in studying the dynamic iron corrosion processes.Finally,in the future,more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties.We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment. 展开更多
关键词 Nanoscale zero-valent iron(nZVI) Corrosion behaviors Corrosion kinetics nZVI evolution
原文传递
Effects of zero-valent iron added in the flooding or drainage process on cadmium immobilization in an acid paddy soil
11
作者 Hanbing Meng Shiwen Hu +8 位作者 Zebin Hong Wenting Chi Guojun Chen Kuan Cheng QiWang Tongxu Liu Fangbai Li Kexue Liu Yang Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期19-31,共13页
Zero-valent iron(ZVI)is a promising material for the remediation of Cd-contaminated paddy soils.However,the effects of ZVI added during flooding or drainage processes on cadmium(Cd)retention remain unclear.Herein,Cd-c... Zero-valent iron(ZVI)is a promising material for the remediation of Cd-contaminated paddy soils.However,the effects of ZVI added during flooding or drainage processes on cadmium(Cd)retention remain unclear.Herein,Cd-contaminated paddy soil was incubated for 40days of flooding and then for 15 days of drainage,and the underlying mechanisms of Cd immobilization coupled with Fe/S/N redox processes were investigated.The addition of ZVI to the flooding process was more conducive to Cd immobilization.Less potential available Cd was detected by adding ZVI before flooding,which may be due to the increase in paddy soil pH and newly formed secondary Fe minerals.Moreover,the reductive dissolution of Fe minerals promoted the release of soil colloids,thereby increasing significantly the surface sites and causing Cd immobilization.Additionally,the addition of ZVI before flooding played a vital role in Cd retention after soil drainage.In contrast,the addition of ZVI in the drainage phase was not conducive to Cd retention,which might be due to the rapid decrease in soil pH that inhibited Cd adsorption and further immobilization on soil surfaces.The findings of this study demonstrated that Cd availability in paddy soil was largely reduced by adding ZVI during the flooding period and provide a novel insight into the mechanisms of ZVI remediation in Cd-contaminated paddy soils. 展开更多
关键词 Paddy soil zero-valent iron CADMIUM Flooding and drainage REMEDIATION
原文传递
Enhancing corn stalk-based anaerobic digestion with different types of zero-valent iron added during the acidification stage:Performance and mechanism
12
作者 Xiang Liu Yue Liu +2 位作者 Min Wang Qianzhen Deng Hao Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第11期64-74,共11页
Anaerobic digestion has been defined as a competitive approach to facilitate the recycling of corn stalks.However,few studies have focused on the role of direct interspecies electron transfer(DIET)pathway in the acidi... Anaerobic digestion has been defined as a competitive approach to facilitate the recycling of corn stalks.However,few studies have focused on the role of direct interspecies electron transfer(DIET)pathway in the acidification stage under the addition of different particle sizes of zero-valent iron(ZVI).In this study,three types of ZVI,namely iron filings,iron powder and nanoscale iron,were investigated,respectively,to enhance its high-value conversion.Variations in volatile fatty acids(VFAs)and methane(CH4)production associated with the underlyingmechanisms were emphatically determined.Results indicated that the addition of ZVI could increase the concentration of VFAs,with the most outstanding performance observed with the use of nanoscale iron.Importantly,the conversion of propionic acid to acetic acid was driven by adding ZVI with no between-group differences in acidizing phase.Conversely,the substrate was more fully utilized when supplied with iron powder compared with other groups in methanogenic phase,thereby displaying the maximumCH4 yield with a value of 263.1 mL/(g total solids(TS)).However,adding nanoscale iron could signally shorten the digestion time(T80),saving 7 days in comparison to the group of iron powder. 展开更多
关键词 zero-valent iron Corn stalk Anaerobic digestion Volatile fatty acids METHANE
原文传递
Amino acids modified nanoscale zero-valent iron:Density functional theory calculations,experimental synthesis and application in the Fenton-like degradation of organic solvents
13
作者 Xingchen Yang Fucheng Ming +1 位作者 Jianlong Wang Lejin Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期296-309,共14页
To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like deg... To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents. 展开更多
关键词 Amino acids Nanoscale zero-valent iron Density functional theory Organic solvents Fenton-like degradation
原文传递
Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ)removal
14
作者 Zhongsen Wang Lijun Qiu +6 位作者 Yunhua Huang Meng Zhang Xi Cai Fanyu Wang Yang Lin Yanbiao Shi Xiao Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期192-195,共4页
Sulfidation of zero-valent iron(ZVI)has attracted broad attention in recent years for improving the sequestration of contaminants from water.However,sulfidated ZVI(S-ZVI)is mostly synthesized in the aqueous phase,whic... Sulfidation of zero-valent iron(ZVI)has attracted broad attention in recent years for improving the sequestration of contaminants from water.However,sulfidated ZVI(S-ZVI)is mostly synthesized in the aqueous phase,which usually causes the formation of a thick iron oxide layer on the ZVI surface and hinders the efficient electron transfer to the contaminants.In this study,an alcohothermal strategy was employed for S-ZVI synthesis by the one-step reaction of iron powder with elemental sulfur.It is found that ferrous sulfide(FeS)with high purity and fine crystallization was formed on the ZVI surface,which is extremely favorable for electron transfer.Cr(Ⅵ)removal experiments confirm that the rate constant of SZVI synthesized by the alcohothermal method was 267.1-and 5.4-fold higher than those of un-sulfidated ZVI and aqueous-phase synthesized S-ZVI,respectively.Systematic characterizations proved that Cr(Ⅵ)was reduced and co-precipitated on S-ZVI in the form of a Fe(Ⅲ)/Cr(Ⅲ)/Cr(Ⅵ)composite,suggesting its environmental benignancy. 展开更多
关键词 zero-valent iron SULFIDATION Alcohothermal method Cr(Ⅵ)removal
原文传递
Nonmetallic modified zero-valent iron for remediating halogenated organic compounds and heavy metals: A comprehensive review
15
作者 Zimin Yan Jia Ouyang +4 位作者 Bin Wu Chenchen Liu Hongcheng Wang Aijie Wang Zhiling Li 《Environmental Science and Ecotechnology》 SCIE 2024年第5期34-46,共13页
Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising... Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies. 展开更多
关键词 Nonmetallic modified zero-valent iron Halogenated organic compounds Heavy metals Reductive removal Regulation strategies Electron selectivity
原文传递
Surfactant-assisted removal of 2,4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate 被引量:1
16
作者 Ling Xu Ji Li +4 位作者 Wenbin Zeng Kai Liu Yibing Ma Liping Fang Chenlu Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期447-455,共9页
The organic compounds contaminated soil substantially threatens the growth of plants and food safety.In this study,we synthesis zero-valent bimetallic Fe/Cu catalysts for the degradation of 2,4-dichlorophenol(DCP)in s... The organic compounds contaminated soil substantially threatens the growth of plants and food safety.In this study,we synthesis zero-valent bimetallic Fe/Cu catalysts for the degradation of 2,4-dichlorophenol(DCP)in soils with persulfate(PS)in combination of organic surfactants and exploring the main environmental impact factors.The kinetic experiments show that the 5%(mass)dosage of Fe/Cu exhibits a higher degradation efficiency(86%)of DCP in soils,and the degradation efficiency of DCP increases with the increase of the initial PS concentration.Acidic conditions are favorable for the DCP degradation in soils.More importantly,the addition of Tween-80,and Triton-100 can obviously desorb DCP from the soil surface,which enhances the degradation efficiency of DCP in soils by Fe/Cu and PS reaction system.Furthermore,the Quenching experiments demonstrate that SO_(4)^(-1)·and·OH are the predominant radicals for the degradation of DCP during the Fe/Cu and PS reaction system as well as non-radical also exist.The findings of this work provide an effective method for remediating DCP from soils. 展开更多
关键词 zero-valent iron and copper Advanced oxidation process PERSULFATE Chlorinated organic pollutants SURFACTANT
下载PDF
Enhanced removal of estrogens from simulated wastewater by biochar supported nanoscale zero-valent iron:performance and mechanism 被引量:1
17
作者 Yuping Han Huanhuan Xu +4 位作者 Guangzhou Wang Peiyuan Deng Lili Feng Yaoshen Fan Jiaxin Zhang 《Biochar》 SCIE CAS CSCD 2023年第1期1159-1173,共15页
The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-fri... The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-friendly methods for reducing estrogens pollution.To address the agglomeration and oxidation of nano zero-valent iron(nZVI),biochar-nanoscale zero-valent iron composite(nZVI-biochar)could be a feasible choice for estrogens removal.This study summarized biochar and nZVI-biochar preparation,characterization,and unusual applications for estrone(E1),17β-estradiol(E2),and estriol(E3)removal.The properties of biochar and nZVI-biochar in characterization,effects of influencing factors on the removal efficiency,adsorption kinetics,isotherm and thermodynamics were investigated.The experiment results showed that nZVI-biochar exhibited the superior removal performance for estrogens pollutants compared to biochar.Based on the quasi-second-order model,estrogens adsorption kinetics were observed,which supported the mechanism that chemical and physical adsorption existed simultaneously on estrogens removal.The adsorption isotherm of estrogens could be well presented by the Freundlich model and thermodynamics studies explained that nZVI-biochar could spontaneously remove estrogens pollutants and the main mechanisms involvedπ-πinteraction,hydrophobic interaction,hydrogen bonding and degradation through ring rupture.The products analyzed by GC-MS showed that estrogens degradation was primarily attributed to the benzene ring broken,and Fe^(3+)promoted the production of free radicals,which further proved that nZVI-biochar had the excellent adsorption performances.Generally,nZVI-biochar could be employed as a potential material for removing estrogens from wastewater. 展开更多
关键词 Biochar supported nanoscale zero-valent iron ESTROGENS Free radicals ADSORPTION DEGRADATION
原文传递
Incorporation of N-doped biochar into zero-valent iron for efficient reductive degradation of neonicotinoids:mechanism and performance 被引量:1
18
作者 Xiangying Li Xiangyu Zhang +5 位作者 Peng Zhang Xinhua Wang Hongwen Sun Yongyue Lu Le Jiao Chenglan Liu 《Biochar》 SCIE CAS CSCD 2023年第1期1343-1359,共17页
The extensive use of neonicotinoids on food crops for pest management has resulted in substantial environmental contamination.It is imperative to develop an effective remediation material and technique as well as to d... The extensive use of neonicotinoids on food crops for pest management has resulted in substantial environmental contamination.It is imperative to develop an effective remediation material and technique as well as to determine the evolution pathways of products.Here,novel ball-milled nitrogen-doped biochar(NBC)-modified zero-valent iron(ZVI)composites(named MNBC-ZVI)were fabricated and applied to degrading neonicotinoids.Based on the characterization results,NBC incorporation introduced N-doped sites and new allying heterojunctions and achieved surface charge redistribution,rapid electron transfer,and higher hydrophobicity of ZVI particles.As a result,the interaction between ZVI particles and thiamethoxam(a typical neonicotinoid)was improved,and the adsorption-desorption and reductive degradation of thiamethoxam and·H generation steps were optimized.MNBC-ZVI could rapidly degrade 100%of 10 mg·L^(−1) thiamethoxam within 360 min,its reduction rate constant was 12.1-fold greater than that of pristine ZVI,and the electron efficiency increased from 29.7%to 57.8%.This improved reactivity and selectivity resulted from increased electron transfer,enhanced hydrophobicity,and reduced accumulation of iron mud.Moreover,the degradation of neonicotinoids occurred mainly via nitrate reduction and dichlorination,and toxicity tests with degradation intermediates revealed that neonicotinoids undergo rapid detoxification.Remarkably,MNBCZVI also presented favorable tolerance to various anions,humic acid,wastewater and contaminated soil,as well as high reusability.This work offers an efficient and economic biochar-ZVI remediation technology for the rapid degradation and detoxification of neonicotinoids,significantly contributes to knowledge on the relevant removal mechanism and further advances the synthesis of highly reactive and environmentally friendly materials. 展开更多
关键词 zero-valent iron(ZVI) Ball milling N-doped biochar Neonicotinoid degradation Electron efficiency
原文传递
Biochar and zero-valent iron sand filtration simultaneously removes contaminants of emerging concern and Escherichia coli from wastewater effluent 被引量:1
19
作者 Linyan Zhu Suhana Chattopadhyay +11 位作者 Oluwasegun Elijah Akanbi Steven Lobo Suraj Panthi Leena Malayil Hillary A.Craddock Sarah M.Allard Manan Sharma Kalmia E.Kniel Emmanuel F.Mongodin Pei C.Chiu Amir Sapkota Amy R.Sapkota 《Biochar》 SCIE CAS CSCD 2023年第1期710-722,共13页
Advanced treated municipal wastewater is an important alternative water source for agricultural irrigation.However,the possible persistence of chemical and microbiological contaminants in these waters raise potential ... Advanced treated municipal wastewater is an important alternative water source for agricultural irrigation.However,the possible persistence of chemical and microbiological contaminants in these waters raise potential safety concerns with regard to reusing treated wastewater for food crop irrigation.Two low-cost and environmentally-friendly filter media,biochar(BC)and zero-valent iron(ZVI),have attracted great interest in terms of treating reused water.Here,we evaluated the efficacy of BC-,nanosilver-amended biochar-(Ag-BC)and ZVI-sand filters,in reducing contaminants of emerging concern(CECs),Escherichia coli(E.coli)and total bacterial diversity from wastewater effluent.Six experiments were conducted with control quartz sand and sand columns containing BC,Ag-BC,ZVI,BC with ZVI,or Ag-BC with ZVI.After filtration,Ag-BC,ZVI,BC with ZVI and Ag-BC with ZVI demonstrated more than 90%(>1 log)removal of E.coli from wastewater samples,while BC,Ag-BC,BC with ZVI and Ag-BC with ZVI also demonstrated efficient removal of tested CECs.Lower bacterial diversity was also observed after filtration;however,differences were marginally significant.In addition,significantly(p<0.05)higher bacterial diversity was observed in wastewater samples collected during warmer versus colder months.Leaching of silver ions occurred from Ag-BC columns;however,this was prevented through the addition of ZVI.In conclusion,our data suggest that the BC with ZVI and Ag-BC with ZVI sand filters,which demonstrated more than 99%removal of both CECs and E.coli without silver ion release,may be effective,low-cost options for decentralized treatment of reused wastewater. 展开更多
关键词 BIOCHAR zero-valent iron Wastewater reuse Contaminants of emerging concern Recycled water E.COLI
原文传递
Insights into influence of aging processes on zero-valent iron modified biochar in copper(II) immobilization: from batch solution to pilot-scale investigation
20
作者 Huabin Wang Dingxiang Chen +4 位作者 Yi Wen Ting Cui Ying Liu Yong Zhang Rui Xu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第7期880-892,共13页
The zero-valent iron modified biochar materials are widely employed for heavy metals immobilization.However,these materials would be inevitably aged by natural forces after entering into the environment,while there ar... The zero-valent iron modified biochar materials are widely employed for heavy metals immobilization.However,these materials would be inevitably aged by natural forces after entering into the environment,while there are seldom studies reported the aging effects of zero-valent iron modified biochar.In this work,the hydrogen peroxide and hydrochloric acid solution were applied to simulate aging conditions of zero-valent iron modified biochar.According to the results,the adsorption capacity of copper(II)contaminants on biochar,zero-valent iron modified biochar-1,and zero-valent iron modified biochar-2 after aging was decreased by 15.36%,22.65%and 23.26%,respectively.The surface interactions were assigned with chemisorption occurred on multi-molecular layers,which were proved by the pseudo-second-order and Langmuir models.After aging,the decreasing of capacity could be mainly attributed to the inhibition of ion-exchange and zero-valent iron oxidation.Moreover,the plant growth and soil leaching experiments also proved the effects of aging treatment,the zero-valent iron modified biochar reduced the inhibition of copper(II)bioavailability and increased the mobility of copper(II)after aging.All these results bridged the gaps between bio-adsorbents customization and their environmental behaviors during practical agro-industrial application. 展开更多
关键词 zero-valent iron modified biochar aging processes copper removal adsorption pilot-scale experiments
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部