Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and st...Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar- to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water- splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.展开更多
To achieve the rapid and real-time detection of triethylamine(TEA)gas,this study synthesized a gas sensor based on heterostructures of Fe_(2)O_(3)/MoO_(3) using a hydrothermal method.Fe_(2)O_(3)/MoO_(3) composites wit...To achieve the rapid and real-time detection of triethylamine(TEA)gas,this study synthesized a gas sensor based on heterostructures of Fe_(2)O_(3)/MoO_(3) using a hydrothermal method.Fe_(2)O_(3)/MoO_(3) composites with a narrow bandgap(1.1 eV)were successfully synthesized by constructing heterostructures.The rapid and efficient detection of triethylamine was achieved at 220℃.The response and response/recovery times of the Fe_(2)O_(3)/MoO_(3) sensor with 50×10^(−6) triethylamine were 132 s and 5 s/10 s,respectively.The Fe_(2)O_(3)/MoO_(3) sensor maintained a good response to triethylamine gas,even at 80%relative humidity.The sensing mechanism of the Fe_(2)O_(3)/MoO_(3) sensor can be described in terms of adsorption energy and electronic behavior of the sensing layer using density functional theory(DFT).The results are consistent with the excellent selectivity and rapid response/recovery of the Fe_(2)O_(3)/MoO_(3) gas sensor for triethylamine.Therefore,the construction of heterostructures to facilitate electron transmission is an effective strategy to achieve rapid detection of triethylamine and is worthy of further exploration and investigation.展开更多
All-fused-ringπ-conjugated molecules have received considerable attention because of their unique electronic structures,low conformation disorder,and excellent optoelectronic properties.Most all-fused-ring molecules ...All-fused-ringπ-conjugated molecules have received considerable attention because of their unique electronic structures,low conformation disorder,and excellent optoelectronic properties.Most all-fused-ring molecules are p-type organic semiconductors and possess medium bandgaps.In this work,we design and synthesize an all-fused-ring molecule(FM1)with an n-type property and narrow bandgap,which is a 10-fused-ring system composed of one electrondeficient benzotriazole core,two electron-rich thienopyrrole bridging units,and two electron-deficient malononitrile-functionalized end-cappers.FM1 exhibits low-lying highest occupied molecular orbit/lowest unoccupied molecular orbit energy levels of−5.77 eV/−3.89 eV,high electron mobility of 6.0×10^(−4)cm^(2)V^(−1)s^(−1),an optical bandgap of 1.50 eV,and a maximum absorption wavelength of 769nm.Because of the all-fused-ring skeleton,FM1 shows superior photostability and chemical stability.We use FM1 as an electron acceptor and successfully construct organic solar cell(OSC)devices with a decent power conversion efficiency(PCE)of 10.8%.Most importantly,the intrinsic stability of FM1 leads to its excellent OSC device stability.After irradiation with simulated solar light for 16 h,while control of the OSC device of the state-of-the-art small molecule electron acceptor shows a 46%decrease of PCE,the FM1’s unencapsulated OSC device exhibits only a 9%decrease of PCE.展开更多
A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers...A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers and iron perovskite oxide[(FeO_2)(BaO)(FeO_2)]^(2-)layers along the c axis that are separated by barium ions with Fe^(3+) fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuC h-based(Ch =S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba_3Fe_2O_5Cu_2S_2 is an antiferromagnetic semiconductor with a Ne′el temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3 d states of Fe ions that antiferromagnetically arranged in FeO_2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr_3Sc_2O_5Cu_2S_2.展开更多
Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing ...Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.展开更多
There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processe...There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processes severely restrict the further development of all-perovskite tandem solar cells.In this work,we successfully fabricated high-efficiency hole transport material-free(HTM-free)Sn−Pb alloyed narrow bandgap perovskite solar cells(PSCs)by introducing guanidinium thiocyanate(GASCN)and hydroiodic acid(HI)into the perovskite precursor solution.GASCN and HI play a positive synergy effect during perovskite crystallization process resulting in larger grain size,fewer surface defects,and lower trap density to suppress the Sn^(2+)oxidation degradation.Furthermore,they could effectively adjust the energy level of perovskite materials,reduce the energy level difference between perovskite and ITO resulting in more efficiently transport of free hole charge carriers.As a result,with adding GASCN and HI,the achieved highest power conversion efficiency of HTM-free devices increased from 12.58%to 17.85%,which is one of the highest PCEs among all values reported to date for the HTM-free narrow-bandgap(1.2-1.4 eV)Sn−Pb binary PSCs.Moreover,the optimized device shows improved environmental stability.Our additive strategy manifests a remarkable step towards the facile,cost-efficient fabrication of HTM-free perovskite-based tandem solar cells with both high efficiency and simple fabrication process.展开更多
Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduc...Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduced through a precursor(6-bromo-1-octylindoline-2,3-dione)that contains both bromine and carbonyl and provides the feasibility of the Pd-catalyzed cross-coupling reaction and the Knoevenagel condensation,respectively.This facile synthetic approach exhibits the potential to gain high performance non-fullerene acceptors through extendingπ-conjugated backbone with strong light-absorbing building blocks.The synthesis and properties of WH1 and WH7 are demonstrated with different endcap units,then PSCs are fabricated using PBDB-T:WH1 and PBDB-T:WH7 as the active layers,and attain an average power conversion efficiency(PCE)of 2.58%and 6.24%,respectively.Further device physics studies afford the deep insight of structure variation influence on the device performance.This work provides a facile non-fullerene acceptor design strategy and shows how structure variations impact the PSC performance.展开更多
基金The authors would like to acknowledge financial support from the Australian Research Council through its DP and FF programs. Mu Xiao acknowledges support from the Australian Government Research Training Program Scholarship. Financial support from the National Natural Science Foundation of China (513228201) is also highly appreciated.
文摘Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar- to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water- splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.
基金supported by National Natural Science Foundation of China(Nos.61102006 and 51803109)Natural Science Foundation of Shandong Province,China(ZR2022MF234 and No.ZR2018LE006).
文摘To achieve the rapid and real-time detection of triethylamine(TEA)gas,this study synthesized a gas sensor based on heterostructures of Fe_(2)O_(3)/MoO_(3) using a hydrothermal method.Fe_(2)O_(3)/MoO_(3) composites with a narrow bandgap(1.1 eV)were successfully synthesized by constructing heterostructures.The rapid and efficient detection of triethylamine was achieved at 220℃.The response and response/recovery times of the Fe_(2)O_(3)/MoO_(3) sensor with 50×10^(−6) triethylamine were 132 s and 5 s/10 s,respectively.The Fe_(2)O_(3)/MoO_(3) sensor maintained a good response to triethylamine gas,even at 80%relative humidity.The sensing mechanism of the Fe_(2)O_(3)/MoO_(3) sensor can be described in terms of adsorption energy and electronic behavior of the sensing layer using density functional theory(DFT).The results are consistent with the excellent selectivity and rapid response/recovery of the Fe_(2)O_(3)/MoO_(3) gas sensor for triethylamine.Therefore,the construction of heterostructures to facilitate electron transmission is an effective strategy to achieve rapid detection of triethylamine and is worthy of further exploration and investigation.
基金support by the National Key Research and Development Program of China(grant no.2019YFA0705900)funded by MOST and the National Natural Science Foundation of China(grant nos.22135007 and 21875244).
文摘All-fused-ringπ-conjugated molecules have received considerable attention because of their unique electronic structures,low conformation disorder,and excellent optoelectronic properties.Most all-fused-ring molecules are p-type organic semiconductors and possess medium bandgaps.In this work,we design and synthesize an all-fused-ring molecule(FM1)with an n-type property and narrow bandgap,which is a 10-fused-ring system composed of one electrondeficient benzotriazole core,two electron-rich thienopyrrole bridging units,and two electron-deficient malononitrile-functionalized end-cappers.FM1 exhibits low-lying highest occupied molecular orbit/lowest unoccupied molecular orbit energy levels of−5.77 eV/−3.89 eV,high electron mobility of 6.0×10^(−4)cm^(2)V^(−1)s^(−1),an optical bandgap of 1.50 eV,and a maximum absorption wavelength of 769nm.Because of the all-fused-ring skeleton,FM1 shows superior photostability and chemical stability.We use FM1 as an electron acceptor and successfully construct organic solar cell(OSC)devices with a decent power conversion efficiency(PCE)of 10.8%.Most importantly,the intrinsic stability of FM1 leads to its excellent OSC device stability.After irradiation with simulated solar light for 16 h,while control of the OSC device of the state-of-the-art small molecule electron acceptor shows a 46%decrease of PCE,the FM1’s unencapsulated OSC device exhibits only a 9%decrease of PCE.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51472266,51202286,and 91422303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020100)the ICDD
文摘A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers and iron perovskite oxide[(FeO_2)(BaO)(FeO_2)]^(2-)layers along the c axis that are separated by barium ions with Fe^(3+) fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuC h-based(Ch =S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba_3Fe_2O_5Cu_2S_2 is an antiferromagnetic semiconductor with a Ne′el temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3 d states of Fe ions that antiferromagnetically arranged in FeO_2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr_3Sc_2O_5Cu_2S_2.
基金supported by the National Natural Science Foundation of China (Grant No. 12074321)the Young Science and Technology Talents Development Project of Guizhou Provincial Education Department (Grant No. QJH-KY [2022]012)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. SWU020019)the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyjmsxmx0648)the Chongqing Graduate Student Research Innovation Project (Grant No. CYB22119)。
文摘Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.
基金financially supported by the Joint Funds Project funding from Guangdong Basic and Applied Basic Research Foundation(Grant No.2019B1515120083)the National Natural Science Foundation of China(Grant No.U19A2089)+4 种基金the Key Fundamental Research Project funding from the Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20200109141014474)the National Key Research and Development Project from the Ministry of Science and Technology of China(Grants Nos.2016YFA0202400 and 2016YFA0202404)the Peacock Team Project from Shenzhen Science and Technology Innovation Committee(Grant No.KQTD2015033110182370)Shenzhen Engineering R&D Center for Flexible Solar Cells project funding from Shenzhen Development and Reform Committee(Grant No.2019-126)the Guangdong-Hong Kong-Macao Joint Laboratory(Grant No.2019B121205001).
文摘There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processes severely restrict the further development of all-perovskite tandem solar cells.In this work,we successfully fabricated high-efficiency hole transport material-free(HTM-free)Sn−Pb alloyed narrow bandgap perovskite solar cells(PSCs)by introducing guanidinium thiocyanate(GASCN)and hydroiodic acid(HI)into the perovskite precursor solution.GASCN and HI play a positive synergy effect during perovskite crystallization process resulting in larger grain size,fewer surface defects,and lower trap density to suppress the Sn^(2+)oxidation degradation.Furthermore,they could effectively adjust the energy level of perovskite materials,reduce the energy level difference between perovskite and ITO resulting in more efficiently transport of free hole charge carriers.As a result,with adding GASCN and HI,the achieved highest power conversion efficiency of HTM-free devices increased from 12.58%to 17.85%,which is one of the highest PCEs among all values reported to date for the HTM-free narrow-bandgap(1.2-1.4 eV)Sn−Pb binary PSCs.Moreover,the optimized device shows improved environmental stability.Our additive strategy manifests a remarkable step towards the facile,cost-efficient fabrication of HTM-free perovskite-based tandem solar cells with both high efficiency and simple fabrication process.
基金National Natural Science Foundation of China(No.21805032)Natural Science Foundation of Shanghai,China(No.19ZR1401400)Fundamental Research Funds for the Central Universities,China(No.20D128502).
文摘Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduced through a precursor(6-bromo-1-octylindoline-2,3-dione)that contains both bromine and carbonyl and provides the feasibility of the Pd-catalyzed cross-coupling reaction and the Knoevenagel condensation,respectively.This facile synthetic approach exhibits the potential to gain high performance non-fullerene acceptors through extendingπ-conjugated backbone with strong light-absorbing building blocks.The synthesis and properties of WH1 and WH7 are demonstrated with different endcap units,then PSCs are fabricated using PBDB-T:WH1 and PBDB-T:WH7 as the active layers,and attain an average power conversion efficiency(PCE)of 2.58%and 6.24%,respectively.Further device physics studies afford the deep insight of structure variation influence on the device performance.This work provides a facile non-fullerene acceptor design strategy and shows how structure variations impact the PSC performance.