期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A SURFACTANT-ASSISTED APPROACH FOR PREPARING COLLOIDAL AZO POLYMER SPHERES WITH NARROW SIZE DISTRIBUTION
1
作者 王晓工 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第4期431-436,共6页
A surfactant-assisted method for preparing colloidal spheres with narrow size distribution from a polydispersed azo polymer has been developed in this work. The colloidal spheres were formed through gradual hydrophobi... A surfactant-assisted method for preparing colloidal spheres with narrow size distribution from a polydispersed azo polymer has been developed in this work. The colloidal spheres were formed through gradual hydrophobic aggregation of the polymeric chains in THF-H2O dispersion media, which was induced by a steady increase in the water content. Results showed that the addition of a small amount of surfactant (SDBS) could significantly narrow the size distribution of the colloidal spheres. The size distribution of the colloidal spheres was determined by the concentrations of azo polymer and the amount of surfactant in the systems. When the concentrations of polymer and surfactant amount were in a proper range, colloidal spheres with narrow size distribution could be obtained. The colloidal spheres formed by this method could be elongated along the polarization direction of the laser beams to be a new type of the colloid-based functional materials. upon Ar^+ laser irradiation. The colloidal spheres are considered 展开更多
关键词 Surfactant-assisted narrow size distribution Colloidal sphere Azo polymer.
下载PDF
Microfluidic preparation of surfactant-free ultrafine DAAF with tunable particle size for insensitive initiator explosives
2
作者 Bo Yang Rui Li +9 位作者 Wei Cao Si-min He Jincan Zhu Qi Wu Heng Ding Jin Chen Weimiao Wang Zhiqiang Qiao Xiaodong Li Guangcheng Yang 《Defence Technology(防务技术)》 SCIE EI CAS 2024年第9期42-52,共11页
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c... High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives. 展开更多
关键词 Microfluidic preparation Screening crystallization conditions narrow particle size distribution Low initiation sensitivity Ultrafine DAAF
下载PDF
Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence 被引量:7
3
作者 Rui Zou Junjian Huang +7 位作者 Junpeng Shi Lin Huang Xuejie Zhang Ka-Leung Wong Hongwu Zhang Dayong Jin Jing Wang Qiang Su 《Nano Research》 SCIE EI CAS CSCD 2017年第6期2070-2082,共13页
Near-infrared (NIR) persistent-luminescence nanoparticles have emerged as a new class of background-free contrast agents that are promising for in vivo imaging. The next key roadblock is to establish a robust and co... Near-infrared (NIR) persistent-luminescence nanoparticles have emerged as a new class of background-free contrast agents that are promising for in vivo imaging. The next key roadblock is to establish a robust and controllable method for synthesizing monodisperse nanoparticles with high luminescence brightness and long persistent duration. Herein, we report a synthesis strategy involving the coating/etching of the SiO2 shell to obtain a new class of small NIR highly persistent luminescent ZnGa2O4:Cr^3+,Sn^4+(ZGOCS) nanoparticles. The optimized ZGOCS nanoparticles have an excellent size distribution of -15 nm without any agglomeration and an NIR persistent luminescence that is enhanced by a factor of 13.5, owing to the key role of the SiO2 shell in preventing nanoparticle agglomeration after annealing. The ZGOCS nanoparticles have a signal-to-noise ratio -3 times higher than that of previously reported ZnGa204:Cr^3+ (ZGC-1) nanoparticles as an NIR persistent-luminescence probe for in vivo bioimaging. Moreover, the persistent-luminescence signal from the ZGOCS nanoparticles can be repeatedly re-charged in situ with external excitation by a white light- emitting diode; thus, the nanopartides are suitable for long-term in vivo imaging applications. Our study suggests an improved strategy for fabricating novel high-performance optical nanoparticles with good biocompatibility. 展开更多
关键词 core-shell structure in vivo imaging narrow size distribution near-infrared (NIR)persistent luminescence BIOCOMPATIBILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部