A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum re...A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum reduction of the phase noise by about 16dB can be achieved. Compared to other compensation methods,the technique proposed here is relatively simple and easy to implement. Key building blocks for realizing the noise cancellation,including the delay variable PFD and compensation current source, are specially designed. Both the behavior level and circuit level simulation results are presented.展开更多
Laser phase noise (LPN) plays an important role in optical coherent systems. Based on the algorithm of Viterbi-Viterbi cartier phase estimation (CPE), the effects of LPN imposed on the coherent receivers are inves...Laser phase noise (LPN) plays an important role in optical coherent systems. Based on the algorithm of Viterbi-Viterbi cartier phase estimation (CPE), the effects of LPN imposed on the coherent receivers are investigated for quadrature phase shift keying (QPSK), 8 phase shift keying (SPSK) and 16-quadrature amplitude modulation (16-QAM) optical coherent systems, respectively. The simulation results show that the optimal block length in the phase estimation algorithm is a tradeoffbetween LPN and additive white Gaussian noise (AWGN), and depends on the level of modulation formats. The resolution requirements of analog to digital converter (ADC) in the coherent receivers are independent of LPN or the level of modulation formats. For the bit error rate (BER) of 10-3, the required bit number of ADC is 6, and the gain is marginal for the higher resolution.展开更多
In view of the poor scale factor stability of the interferometric fiber optic gyroscope(IFOG),it is a creative method to use laser to drive the IFOG for its better frequency stabilization characteristics instead of th...In view of the poor scale factor stability of the interferometric fiber optic gyroscope(IFOG),it is a creative method to use laser to drive the IFOG for its better frequency stabilization characteristics instead of the broadband light source.As the linewidth of laser is narrow,the errors of coherent backscattering,polarization coupling,and Kerr effect are reintroduced which cause more noise and drift.This paper studies laser spectrum broadening based on external phase modulation of Gaussian white noise(GWN).The theoretical analysis and test results indicate that this method has a good effect on spectrum broadening and can be used to improve the performance of the laser-driven IFOG.In the established closed-loop IFOG,a four-state modulation(FSM)is adopted to avoid temperature instability of the multifunction integrated-optic chip(MIOC)and drift caused by the electronic circuit in demodulation.The experimental results show that the IFOG driven by broadened laser has the angular random walk noise of 0.0038°/√h and the drift of 0.017°/h,which are 62%and 66%better than those without modulation respectively,of which the drift has reached the level of the broadband light source.Although the noise still needs further reduction,its scale factor stability is 0.38 ppm,which has an overwhelming advantage compared with the traditional IFOG.展开更多
A wide-band frequency synthesizer with low phase noise is presented.The frequency tuning range is from 474 to 858 MHz which is compatible with U-band CMMB application while the S-band frequency is also included. Three...A wide-band frequency synthesizer with low phase noise is presented.The frequency tuning range is from 474 to 858 MHz which is compatible with U-band CMMB application while the S-band frequency is also included. Three VCOs with selectable sub-band are integrated on chip to cover the target frequency range.This PLL is fabricated with 0.35μm SiGe BiCMOS technology.The measured result shows that the RMS phase error is less than 1°and the reference spur is less than -60 dBc.The proposed PLL consumes 20 mA current from a 2.8 V supply.The silicon area occupied without PADs is 1.17 mm;.展开更多
文摘A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum reduction of the phase noise by about 16dB can be achieved. Compared to other compensation methods,the technique proposed here is relatively simple and easy to implement. Key building blocks for realizing the noise cancellation,including the delay variable PFD and compensation current source, are specially designed. Both the behavior level and circuit level simulation results are presented.
基金supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.11JK1006)
文摘Laser phase noise (LPN) plays an important role in optical coherent systems. Based on the algorithm of Viterbi-Viterbi cartier phase estimation (CPE), the effects of LPN imposed on the coherent receivers are investigated for quadrature phase shift keying (QPSK), 8 phase shift keying (SPSK) and 16-quadrature amplitude modulation (16-QAM) optical coherent systems, respectively. The simulation results show that the optimal block length in the phase estimation algorithm is a tradeoffbetween LPN and additive white Gaussian noise (AWGN), and depends on the level of modulation formats. The resolution requirements of analog to digital converter (ADC) in the coherent receivers are independent of LPN or the level of modulation formats. For the bit error rate (BER) of 10-3, the required bit number of ADC is 6, and the gain is marginal for the higher resolution.
文摘In view of the poor scale factor stability of the interferometric fiber optic gyroscope(IFOG),it is a creative method to use laser to drive the IFOG for its better frequency stabilization characteristics instead of the broadband light source.As the linewidth of laser is narrow,the errors of coherent backscattering,polarization coupling,and Kerr effect are reintroduced which cause more noise and drift.This paper studies laser spectrum broadening based on external phase modulation of Gaussian white noise(GWN).The theoretical analysis and test results indicate that this method has a good effect on spectrum broadening and can be used to improve the performance of the laser-driven IFOG.In the established closed-loop IFOG,a four-state modulation(FSM)is adopted to avoid temperature instability of the multifunction integrated-optic chip(MIOC)and drift caused by the electronic circuit in demodulation.The experimental results show that the IFOG driven by broadened laser has the angular random walk noise of 0.0038°/√h and the drift of 0.017°/h,which are 62%and 66%better than those without modulation respectively,of which the drift has reached the level of the broadband light source.Although the noise still needs further reduction,its scale factor stability is 0.38 ppm,which has an overwhelming advantage compared with the traditional IFOG.
文摘A wide-band frequency synthesizer with low phase noise is presented.The frequency tuning range is from 474 to 858 MHz which is compatible with U-band CMMB application while the S-band frequency is also included. Three VCOs with selectable sub-band are integrated on chip to cover the target frequency range.This PLL is fabricated with 0.35μm SiGe BiCMOS technology.The measured result shows that the RMS phase error is less than 1°and the reference spur is less than -60 dBc.The proposed PLL consumes 20 mA current from a 2.8 V supply.The silicon area occupied without PADs is 1.17 mm;.