Mixed orthogonal arrays of strength two and size smn are constructed by grouping points in the finite projective geometry PG(mn-1, s). PG(mn-1, s) can be partitioned into [(smn-1)/(sn-1)](n-1)-flats such that each (n-...Mixed orthogonal arrays of strength two and size smn are constructed by grouping points in the finite projective geometry PG(mn-1, s). PG(mn-1, s) can be partitioned into [(smn-1)/(sn-1)](n-1)-flats such that each (n-1)-flat is associated with a point in PG(m-1, sn). An orthogonal array Lsmn((sn)(smn-)(sn-1) can be constructed by using (smn-1)/( sn-1) points in PG(m-1, sn). A set of (st-1)/(s-1) points in PG(m-1, sn) is called a (t-1)-flat over GF(s) if it is isomorphic to PG(t-1, s). If there exists a (t-1)-flat over GF(s) in PG(m-1, sn), then we can replace the corresponding [(st-1)/(s-1)] sn-level columns in Lsmn((sn)(smn-)(sn-1) by (smn-1)/( sn-1) st -level columns and obtain a mixed orthogonal array. Many new mixed orthogonal arrays can be obtained by this procedure. In this paper, we study methods for finding disjoint (t-1)-flats over GF(s) in PG(m-1, sn) in order to construct more mixed orthogonal arrays of strength two. In particular, if m and n are relatively prime then we can construct an Lsmn((sm)smn-1/sm-1-i(sn-1)/ (s-1)( sn) i(sm-1)/ s-1) for any 0i(smn-1)(s-1)/( sm-1)( sn-1) New orthogonal arrays of sizes 256, 512, and 1024 are obtained by using PG(7,2), PG(8,2), and PG(9,2) respectively.展开更多
文摘Mixed orthogonal arrays of strength two and size smn are constructed by grouping points in the finite projective geometry PG(mn-1, s). PG(mn-1, s) can be partitioned into [(smn-1)/(sn-1)](n-1)-flats such that each (n-1)-flat is associated with a point in PG(m-1, sn). An orthogonal array Lsmn((sn)(smn-)(sn-1) can be constructed by using (smn-1)/( sn-1) points in PG(m-1, sn). A set of (st-1)/(s-1) points in PG(m-1, sn) is called a (t-1)-flat over GF(s) if it is isomorphic to PG(t-1, s). If there exists a (t-1)-flat over GF(s) in PG(m-1, sn), then we can replace the corresponding [(st-1)/(s-1)] sn-level columns in Lsmn((sn)(smn-)(sn-1) by (smn-1)/( sn-1) st -level columns and obtain a mixed orthogonal array. Many new mixed orthogonal arrays can be obtained by this procedure. In this paper, we study methods for finding disjoint (t-1)-flats over GF(s) in PG(m-1, sn) in order to construct more mixed orthogonal arrays of strength two. In particular, if m and n are relatively prime then we can construct an Lsmn((sm)smn-1/sm-1-i(sn-1)/ (s-1)( sn) i(sm-1)/ s-1) for any 0i(smn-1)(s-1)/( sm-1)( sn-1) New orthogonal arrays of sizes 256, 512, and 1024 are obtained by using PG(7,2), PG(8,2), and PG(9,2) respectively.