期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Application of BP Neural Networks to Analysis the National Vulnerability 被引量:1
1
作者 Guodong Zhao Yuewei Zhang +2 位作者 Yiqi Shi Haiyan Lan Qing Yang 《Computers, Materials & Continua》 SCIE EI 2019年第2期421-436,共16页
Climate change is the main factor affecting the country’s vulnerability,meanwhile,it is also a complicated and nonlinear dynamic system.In order to solve this complex problem,this paper first uses the analytic hierar... Climate change is the main factor affecting the country’s vulnerability,meanwhile,it is also a complicated and nonlinear dynamic system.In order to solve this complex problem,this paper first uses the analytic hierarchy process(AHP)and natural breakpoint method(NBM)to implement an AHP-NBM comprehensive evaluation model to assess the national vulnerability.By using ArcGIS,national vulnerability scores are classified and the country’s vulnerability is divided into three levels:fragile,vulnerable,and stable.Then,a BP neural network prediction model which is based on multivariate linear regression is used to predict the critical point of vulnerability.The function of the critical point of vulnerability and time is established through multiple linear regression analysis to obtain the regression equation.And the proportion of each factor in the equation is established by using the partial least-squares regression to select the main factors affecting the country’s vulnerability,and using the neural network algorithm to perform the fitting.Lastly,the BP neural network prediction model is optimized by genetic algorithm to get the chaotic time series BP neural network prediction model.In order to verify the practicability of the model,Cambodia is selected to be an example to analyze the critical point of the national vulnerability index. 展开更多
关键词 Climate change BP neural networks national vulnerability GA-BP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部