期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Attribution of explanatory factors for change in soil organic carbon density in the native grasslands of Inner Mongolia,China
1
作者 JIN Dongyan Phil J MURRAY +5 位作者 XIN Xiaoping QIN Yifei CHEN Baorui QING Gele ZHANG Zhao YAN Ruirui 《Journal of Arid Land》 SCIE CSCD 2018年第3期375-387,共13页
The variation in soil organic carbon density(SOCD) has been widely documented at various spatial and temporal scales. However, an accurate method for examining the attribution of explanatory factors for change in SO... The variation in soil organic carbon density(SOCD) has been widely documented at various spatial and temporal scales. However, an accurate method for examining the attribution of explanatory factors for change in SOCD is still lacking. This study aims to attribute and quantify the key climatic factors, anthropogenic activities, and soil properties associated with SOCD change in the native grasslands of Inner Mongolia, China, by comparing data between the 1960s and the 2010s. In 2007 and 2011, we resampled 142 soil profiles which were originally sampled during 1963–1964 in the native grasslands of Inner Mongolia. SOCD was determined in A horizon(eluvial horizon) of the soil. We selected the explanatory factors based on a random forest method, and explored the relationships between SOCD change and each of the explanatory factors using a linear mixed model. Our results indicated that the change in SOCD varied from the east to the west of Inner Mongolia, and SOCD was 18% lower in the 2010s than in the 1960s. The lower SOCD in the 2010s may primarily be attributed to the increasing in mean annual water surface evaporation, which explained approximately 10% and 50% of the total variation and explainable variation in the change in SOCD, respectively. The sand content of the soil is also a significant explanatory factor for the decrease in SOCD, which explained about 4% and 21% of the total variation and explainable variation in the change in SOCD, respectively. Furthermore, the collection of quantitative information on grazing frequency and duration may also help to improve our understanding of the anthropogenic factors that govern the change in SOCD. 展开更多
关键词 soil organic carbon climate change soil texture mixed linear model effect isolation native grasslands
下载PDF
Soil Organic Carbon,Carbon Fractions and Nutrients as Affected by Land Use in Semi-Arid Region of Loess Plateau of China 被引量:21
2
作者 LIU Xun,LI Feng-Min,LIU Da-Qian and SUN Guo-Jun Key Laboratory of Arid and Grassland Ecology of the Ministry of Education,School of Life Sciences,Lanzhou University,Lanzhou 730000 (China) 《Pedosphere》 SCIE CAS CSCD 2010年第2期146-152,共7页
Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated... Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated to evaluate effects of land use conversion on soil organic carbon (SOC) and soil nutrients in the semi-arid region of the Loess Plateau of China.Total organic carbon (TOC),light fraction organic carbon (LFOC),heavy fraction organic carbon (HFOC),total N (TN),nitrate nitrogen (NO 3-N) and nitrite nitrogen (NO 2-N),ammonium nitrogen (NH + 4-N),total P,and available P (AP) were measured.The results showed that SOC in NG,ST and BT were 12.7%,27.7% and 34.8% higher than that of the cropland,respectively.LFOC,light fraction (LF) dry matter,ratio of TOC to TN (C/N) and the ratio of TOC to AP (C/P) were higher in the shrub land or native grassland than in the cropland.Cropland had the highest TN,the sum of NO 3-N and NO 2-N,TP and AP due to the use of chemical fertilizers.TOC significantly correlated with LFOC,HFOC and C/N.LFOC significantly correlated with dry matter of the LF and C/N.TN,the sum of NO 3-N and NO 2-N and AP were significantly negatively correlated with TOC and LFOC.Therefore,land use conversion from cropland to shrub land,or maybe grassland,contributed to SOC sequestration and improved soil nutrients stabilization. 展开更多
关键词 CROPLAND heavy fraction organic carbon light fraction organic carbon native grassland shrub land
下载PDF
Carbon and Nitrogen Storage in Inner Mongolian Grasslands: Relationships with Climate and Soil Texture 被引量:7
3
作者 HE Nian-Peng WANG Ruo-Meng +1 位作者 ZHANG Yun-Hai CHEN Quan-Sheng 《Pedosphere》 SCIE CAS CSCD 2014年第3期391-398,共8页
Understanding the spatial variability of soil carbon (C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate cha... Understanding the spatial variability of soil carbon (C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate change on soil C storage. On the basis of soil data from a transect across the Inner Mongolian grasslands, we determined the quantitative relationships of C and nitrogen (N) in bulk soil and particle-size fractions (sand, silt, and clay) with climate and soil texture to evaluate the major factors controlling soil C and N storage and to predict the effect of climate changes on soil C and N storage. The contents of C and N in the bulk soil and the different fractions in the 0 20 and 20 40 cm soil layers were positively correlated with the mean annum precipitation (MAP) and negatively correlated with the mean annual temperature (MAT). The responses of C storage in the soil and particle-size fractions to MAP and MAT were more sensitive in the 0-20 cm than in the 2(~40 cm soil layer. Although MAP and MAT were both important factors influencing soil C storage, the models that include only MAP could well explain the variation in soil C storage in the Inner Mongolian grasslands. Because of the high correlation between MAP and MAT in the region, the models including MAT did not significantly enhance the model precision. Moreover, the contribution of the fine fraction (silt and clay) to the variation in soil C storage was rather small because of the very low fine fraction content in the Inner Mongolian grasslands. 展开更多
关键词 mean annual precipitation mean annual temperature native grassland particle-size fraction soil organic matter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部