期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
Biomimetic natural biomaterials for tissue engineering and regenerative medicine:new biosynthesis methods,recent advances,and emerging applications 被引量:2
1
作者 Shuai Liu Jiang-Ming Yu +11 位作者 Yan-Chang Gan Xiao-Zhong Qiu Zhe-Chen Gao Huan Wang Shi-Xuan Chen Yuan Xiong Guo-Hui Liu Si-En Lin Alec McCarthy Johnson V.John Dai-Xu Wei Hong-Hao Hou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期50-79,共30页
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas... Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field. 展开更多
关键词 Biomimic scaffold BIOSYNTHESIS natural biomaterial tissue engineering
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
2
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 scaffold biomaterial Sodium alginate CHITOSAN GELATIN 3D printing tissue engineering
下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration
3
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials biomaterialS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
A Review on Silk Fibroin as a Biomaterial in Tissue Engineering
4
作者 Tkhu Chang Le Qian Zhang +3 位作者 Qingdi Qu Wentong Ding Sergej Anatolyevich Lazarev Shuang Pan 《Journal of Biosciences and Medicines》 2024年第3期275-290,共16页
Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replace... Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine. 展开更多
关键词 tissue engineering biomaterial scaffold SILK Fibroin
下载PDF
Exploring the interconnectivity of biomimetic hierarchical porous Mg scaffolds for bone tissue engineering:Effects of pore size distribution on mechanical properties,degradation behavior and cell migration ability 被引量:4
5
作者 Gaozhi Jia Hua Huang +8 位作者 Jialin Niu Chenxin Chen Jian Weng Fei Yu Deli Wang Bin Kang Tianbing Wang Guangyin Yuan Hui Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1954-1966,共13页
Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec... Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process. 展开更多
关键词 Bone tissue engineering porous Mg scaffold INTERCONNECTIVITY Pore size distribution Cell migration
下载PDF
Design and Preparation of Bone Tissue Engineering Scaffolds with Porous Controllable Structure
6
作者 林柳兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期174-180,共7页
A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macr... A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macro channels' shape, size and distribution. By integrating rapid prototyping and traditional porogen technique, the macro channels and micro pores were formed respectively. The size, shape and quantity of micro pores were controlled by porogen particulates. The sintered β-TCP porous scaffolds possessed connective macro channels of approximately 500 μm and micro pores of 200-400 μm. The porosity and connectivity of micro pores became higher with the increase of porogen ratio, while the mechanical properties weakened. The average porosity and compressive strength offl-TCP scaffolds prepared with porogen ratio of 60wt% were 78.12% and 0.2983 MPa, respectively. The cells' adhesion ratio of scaffolds was 67.43%. The ALP activity, OCN content and cells micro morphology indicated that cells grew and proliferated well on the scaffolds. 展开更多
关键词 bone tissue engineering scaffolds rapid prototyping porous structure
下载PDF
Biomaterial–Related Cell Microenvironment in Tissue Engineering and Regenerative Medicine 被引量:7
7
作者 Jingming Gao Xiaoye Yu +2 位作者 Xinlei Wang Yingning He Jiandong Ding 《Engineering》 SCIE EI CAS 2022年第6期31-45,共15页
An appropriate cell microenvironment is key to tissue engineering and regenerative medicine.Revealing the factors that influence the cell microenvironment is a fundamental research topic in the fields of cell biology,... An appropriate cell microenvironment is key to tissue engineering and regenerative medicine.Revealing the factors that influence the cell microenvironment is a fundamental research topic in the fields of cell biology,biomaterials,tissue engineering,and regenerative medicine.The cell microenvironment consists of not only its surrounding cells and soluble factors,but also its extracellular matrix(ECM)or nearby external biomaterials in tissue engineering and regeneration.This review focuses on six aspects of bioma-terial-related cell microenvironments:①chemical composition of materials,②material dimensions and architecture,③material-controlled cell geometry,④effects of material charges on cells,⑤matrix stiff-ness and biomechanical microenvironment,and⑥surface modification of materials.The present chal-lenges in tissue engineering are also mentioned,and eight perspectives are predicted. 展开更多
关键词 tissue engineering Regenerative medicine biomaterialS Cell microenvironment porous scaffold Surface patterning Cell-material interactions
下载PDF
Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds 被引量:8
8
作者 Hai-Yan Wang Rui-Hua Wei Shao-Zhen Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2013年第6期873-878,共6页
The keratoprosthesis(KPro;artificial cornea)is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain visio... The keratoprosthesis(KPro;artificial cornea)is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision.The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty.The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea.Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells,modification of keratoprosthesis to support cornea cells remains elusive.Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials,but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase.The necrosis of stroma and spontaneous extrusion of the device,allow for maintenance of a precorneal tear layer,and play the role of ensuring a good optical surface and resisting bacterial infection.As a result,improvement in corneal cells has been the main aim of several recent investigations;some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells.The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas. 展开更多
关键词 artificial cornea KERATOPROSTHESIS tissue-engineered scaffold corneal cells collagen FIBRIN amniotic membrane biomaterial
下载PDF
Bone tissue engineering scaffold materials: Fundamentals, advances, and challenges
9
作者 Chang Xu Zhize Liu +5 位作者 Xi Chen Yang Gao Wenjun Wang Xijing Zhuang Hao Zhang Xufeng Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期176-186,共11页
Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the... Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the focus of current research in the field of bone damage repair.To this regard, a preferential combination of materials and preparation techniques is considered crucial for the preparation of advanced bone tissue engineering scaffolds to better facilitate the regeneration of broken bone.In this review, current research advances and challenges in bone tissue engineering scaffolds are discussed and analyzed in detail.First, we elucidated the structure and self-healing mechanism of bone tissue.Subsequently, the main applications of different materials, including inorganic and organic materials, in bone tissue engineering scaffolds are summarized.Moreover, we overview the latest research progress of the mainstream preparation strategies of bone tissue engineering scaffolds, and provide an in-depth analysis of the different advantages of each method.Finally, promising future directions and challenges of bone tissue engineering scaffolds are systematically discussed. 展开更多
关键词 biomaterialS Bone defects tissue engineering scaffolds OSTEOGENESIS
原文传递
Restoring nervous system structure and function using tissue engineered living scaffolds 被引量:5
10
作者 Laura A.Struzyna James P.Harris +2 位作者 Kritika S.Katiyar H.Isaac Chen D.Kacy Cullen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期679-685,共7页
Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following ner- vous system injury... Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following ner- vous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regenera- tion rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engi- neered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal dusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in predinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery. 展开更多
关键词 living scaffolds neural tissue engineering cell transplant biomaterialS regeneration NEUROTRAUMA NEURODEGENERATION axon pathfinding cell migration
下载PDF
Tissue engineering for the repair of peripheral nerve injury 被引量:17
11
作者 Pei-Xun Zhang Na Han +5 位作者 Yu-Hui Kou Qing-Tang Zhu Xiao-Lin Liu Da-Ping Quan Jian-Guo Chen Bao-Guo Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第1期51-58,共8页
Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering... Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice. 展开更多
关键词 神经 损害 工程 织物 修理 支架材料 恢复方法 研究人员
下载PDF
生物支架材料及打印技术修复骨缺损 被引量:2
12
作者 孔祥宇 王兴 +6 位作者 裴志伟 常家乐 李斯琴 郝廷 何万雄 张葆鑫 贾燕飞 《中国组织工程研究》 CAS 北大核心 2024年第3期479-485,共7页
背景:近年来随着生物支架材料和生物打印技术的发展,组织工程骨成为了骨缺损修复的研究热点。目的:简述当前骨缺损的治疗方式,总结制备组织工程骨支架的生物材料及生物打印技术,探讨生物材料和打印技术在组织工程中的应用及目前面临的... 背景:近年来随着生物支架材料和生物打印技术的发展,组织工程骨成为了骨缺损修复的研究热点。目的:简述当前骨缺损的治疗方式,总结制备组织工程骨支架的生物材料及生物打印技术,探讨生物材料和打印技术在组织工程中的应用及目前面临的挑战。方法:以“bone defect,tissue engineering,biomaterials,3D printing technology,4D printing technology,bioprinting,biological scaffold,bone repair”或“骨缺损,组织工程,生物材料,3D打印技术,4D打印技术,生物打印,生物支架,骨修复”等作为检索词,应用计算机在中国知网、PubMed、Web of Science数据库检索2009-01-01/2022-12-01发表的相关文献,最后经第一作者筛除并追加收录优质参考文献,共纳入93篇文章进行综述。结果与结论:骨缺损的治疗方式主要有骨移植、膜引导再生技术、基因治疗、骨组织工程技术等,最佳的治疗方式仍没有定论。骨组织工程技术是治疗骨缺损的新兴技术,通过构建能促进成骨细胞增殖分化及增强骨形成能力的三维结构,成为当前研究的重点热点技术。生物支架材料多种多样,各具特点,有利有弊,单一的生物材料无法满足组织工程骨对支架的需求,通常将多种材料复合互补使支架在满足力学性能需求的同时兼顾生物性能。生物打印技术能对支架的孔隙进行调节、构建复杂的空间结构,更利于细胞的黏附增殖和分化。新兴的4D打印技术引入“时间”作为第四维度,使制备的支架具有动态性,随着智能材料的同步发展,4D打印技术为未来骨缺损高效修复提供了可能。 展开更多
关键词 骨缺损 组织工程 生物材料 3D打印技术 4D打印技术 生物打印 生物支架 骨修复
下载PDF
纳米复合水凝胶在骨关节炎治疗中的优势与特征 被引量:1
13
作者 田林灵 郭海瑞 +8 位作者 杜晓明 冯杰 张宪哲 张文彬 孙浩然 张晓彬 王静霞 胡一梅 王毅 《中国组织工程研究》 CAS 北大核心 2024年第15期2410-2415,共6页
背景:纳米复合水凝胶在骨关节炎治疗中有很大的研究前景和应用潜力。目的:综述纳米复合水凝胶在骨关节炎及软骨修复中的研究进展。方法:检索中国知网和PubMed等数据库,英文检索词为“nanocomposite hydrogel,nanogel,osteoarthritis,car... 背景:纳米复合水凝胶在骨关节炎治疗中有很大的研究前景和应用潜力。目的:综述纳米复合水凝胶在骨关节炎及软骨修复中的研究进展。方法:检索中国知网和PubMed等数据库,英文检索词为“nanocomposite hydrogel,nanogel,osteoarthritis,cartilage,physical encapsulation,electrostatic interaction,covalent crosslinking”,中文检索词为“纳米复合水凝胶,纳米水凝胶,骨关节炎,软骨,物理包覆,物理包载,静电作用,共价交联”。根据纳入与排除标准对所有文章进行初筛后,保留相关性较高的71篇文章进行综述。结果与结论:在细胞或动物实验中,纳米复合水凝胶具有改善骨关节炎的效果。纳米复合水凝胶可以从改善关节间力学环境、搭载靶向药物、促进种子细胞软骨化等方面加速软骨修复,改善骨关节炎症内环境,达到治疗骨关节炎的目的。目前纳米复合水凝胶在骨关节炎疾病中的研究仍有巨大的发挥空间,继续深入材料制备研究,积极开展细胞、动物实验将有望为临床治疗骨关节炎开辟新途径。 展开更多
关键词 骨关节炎 软骨修复 软骨组织工程 纳米复合水凝胶 生物材料 生物支架 软骨支架 综述
下载PDF
肌腱组织工程支架生物材料与孔隙特征 被引量:2
14
作者 王晓龙 黄浩然 +2 位作者 张忠欣 王丽敏 胡永成 《中国组织工程研究》 CAS 北大核心 2024年第15期2398-2403,共6页
背景:随着肌腱损伤肌腱移植手术的增多,对肌腱组织工程支架的需求日益增加,研究发现植入物良好的孔隙大小及孔隙率有助于组织愈合。目的:总结肌腱组织工程支架的材料种类,调查各类肌腱组织工程支架材料与孔隙的相关情况。方法:应用计算... 背景:随着肌腱损伤肌腱移植手术的增多,对肌腱组织工程支架的需求日益增加,研究发现植入物良好的孔隙大小及孔隙率有助于组织愈合。目的:总结肌腱组织工程支架的材料种类,调查各类肌腱组织工程支架材料与孔隙的相关情况。方法:应用计算机检索PubMed、Embase、Web of Science数据库中发表的相关文献,检索关键词为“tendon”或“ligament”和“tissue scaffold”以及“porosity”或“permeability”,共纳入84篇符合标准的文献进行归纳总结,讨论并展望未来的发展方向。结果与结论:肌腱组织工程研究所涉及的支架材料主要分为天然肌腱支架材料和人工合成腱性支架材料两大类,其中天然支架材料包含自体肌腱、同种异体肌腱和异种肌腱,自体肌腱、同种异体肌腱在临床上已应用多年,在制备异体肌腱以及动物实验过程中发现脱细胞消毒过程中会导致两种肌腱孔隙大小及孔隙率增加的现象,但是具体原因及机制并未进一步研究。人工合成腱性支架材料目前研究的种类有很多,其中以Leeds Keio、LARS为代表的人工韧带产品目前还在部分国家使用,其他材料目前因技术不成熟等问题未能在临床推广,人工合成腱性支架材料的孔隙及孔隙率因其材料与制备技术的不同也呈现不同的趋势。 展开更多
关键词 生物材料支架 肌腱组织工程 肌腱支架 渗透性 孔隙率 腱骨愈合
下载PDF
甲基丙烯酰明胶水凝胶作为细胞三维培养支架在骨组织工程中的应用 被引量:1
15
作者 王赛楠 王晓菲 张莉 《中国组织工程研究》 CAS 北大核心 2024年第22期3576-3582,共7页
背景:骨缺损的治疗一直是临床医生亟待解决的临床难题,用甲基丙烯酰明胶进行细胞体外3D培养,可以为大面积骨缺损的治疗提供新的方向。目的:文章综述了甲基丙烯酰明胶作为3D细胞培养支架在骨组织工程中的研究进展,以期为临床骨缺损修复... 背景:骨缺损的治疗一直是临床医生亟待解决的临床难题,用甲基丙烯酰明胶进行细胞体外3D培养,可以为大面积骨缺损的治疗提供新的方向。目的:文章综述了甲基丙烯酰明胶作为3D细胞培养支架在骨组织工程中的研究进展,以期为临床骨缺损修复提供进一步的参考。方法:应用计算机检索中国知网及PubMed数据库1986年1月至2023年8月收录的文献,中英文检索词分别为“骨缺损,骨组织工程,生物支架材料,水凝胶,光交联水凝胶,甲基丙烯酰明胶,三维培养,细胞培养”和“Bone defect,Bone tissue engineering,Biomaterial scaffold,Hydrogel,Methylacrylyl photocrosslinked hydrogel,Three-dimensional culture;Cell culture”,最终纳入68篇文献进行综述分析。结果与结论:①同二维培养相比,3D培养可以在无菌条件下,构建立体三维空间,更好地模拟体内环境,为细胞提供合适的温度、酸碱度及足够的营养,使细胞能够在体外正常生长增殖并保持其正常结构与功能,具有独特优势。②在骨组织工程生物支架材料的选择中,水凝胶因其良好的生物相容性、可降解性及具有立体三维网络结构等优点,已被广泛应用于骨再生的研究。③甲基丙烯酰明胶的物理及生物性能受到浓度、光照时间及光引发剂种类以及反应体系等因素的影响,而这些性能均能对细胞的黏附、生长及增殖,甚至细胞形态及功能产生一定的影响。④甲基丙烯酰明胶因具有良好的生物相容性、物理可调节性、可注射性及光敏性能,已被广泛应用于3D细胞封装、3D生物打印及基于数字光处理的立体光刻技术等细胞3D培养体系中。⑤应用各类复合甲基丙烯酰明胶进行细胞的3D培养,可以更好地促进血管形成及骨再生,为临床骨缺损的治疗提供更多可能。⑥目前甲基丙烯酰明胶的来源、合成的方法以及安全性尚没有健全的标准,需要进一步加强研究,对甲基丙烯酰明胶在3D细胞培养领域的应用进行更深入的完善。 展开更多
关键词 骨缺损 骨组织工程 生物支架材料 水凝胶 光交联水凝胶 甲基丙烯酰明胶 二维培养 三维培养 细胞培养
下载PDF
不同交联方法构建的胶原基支架及其性能表征
16
作者 孔彦惠 张传蕾 +5 位作者 刘慧玉 陈诚 高闻语 奚晓玮 郭佳 刘杨 《功能高分子学报》 CAS CSCD 北大核心 2024年第1期49-56,共8页
分别采用1-乙基-(3-二甲氨基丙基)碳酰二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)交联法、甲基丙烯酸酐(MA)修饰光聚合交联法和苯基-2,4,6-三甲基苯甲酰基磷酸锂(LAP)光交联法制备了3种胶原基支架材料,并对其微观结构、理化性能和生物学性能... 分别采用1-乙基-(3-二甲氨基丙基)碳酰二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)交联法、甲基丙烯酸酐(MA)修饰光聚合交联法和苯基-2,4,6-三甲基苯甲酰基磷酸锂(LAP)光交联法制备了3种胶原基支架材料,并对其微观结构、理化性能和生物学性能进行了评价。结果表明:这3种交联法制备的胶原基支架材料的孔洞结构具有显著差异,其孔径范围均为50~250μm,符合组织修复材料对孔径的需求。此外,通过MA复合光交联所得的胶原基支架材料(Col-MA),其抗压强度可达2.17 MPa,满足组织工程理想支架材料对力学性能的基本要求。生物相容性实验结果表明,这3种支架材料均能够为细胞生长提供合适的空间以及供应足够的营养物质。 展开更多
关键词 胶原 组织工程 支架材料 交联 多孔结构 生物材料
下载PDF
海藻酸盐复合凝胶在骨组织工程中的研究进展
17
作者 吴婷 李东泽 +3 位作者 孙秀英 陈秀琼 颜慧琼 林强 《海南师范大学学报(自然科学版)》 CAS 2024年第2期179-188,共10页
骨组织工程支架是以修复缺损的骨并恢复其功能为目的而开发出的人工支架。海藻酸盐是世界上含量最丰富的海洋生物高分子聚合物,其在骨组织工程材料中的应用已被大量研究报道。虽然海藻酸盐作为骨组织支架材料具有优异的生物相容性、良... 骨组织工程支架是以修复缺损的骨并恢复其功能为目的而开发出的人工支架。海藻酸盐是世界上含量最丰富的海洋生物高分子聚合物,其在骨组织工程材料中的应用已被大量研究报道。虽然海藻酸盐作为骨组织支架材料具有优异的生物相容性、良好的生物可降解性和无免疫原性等优点,但是仍存在机械强度较弱、缺乏细胞特异性结合位点、支架结构在生理环境中易被破坏等缺点,严重限制其在骨组织工程中的应用。目前,研究者已经研究出几大类海藻酸盐复合支架材料,这些材料均表现出优异的力学性能和生化性能,因此,海藻酸盐复合支架材料可能在骨组织修复和再生方面具有较高的应用价值。本文主要针对海藻酸盐复合支架材料在骨组织工程中的应用作简要概述。 展开更多
关键词 海藻酸盐 天然高分子 复合凝胶支架 骨材料 骨组织工程
下载PDF
骨组织工程中促血管支架应用的可视化分析 被引量:1
18
作者 方源 康志杰 +2 位作者 王海燕 李筱贺 张凯 《中国组织工程研究》 CAS 北大核心 2024年第17期2708-2715,共8页
背景:对于支架物理性质的研究始终是组织工程研究领域的热点,但对于促血管支架来说,除了要满足支架的基本性能外,还需要通过其他方法来促进血管在支架内的再生过程,以达到修复骨组织的最终目的。目的:对国内外发表的骨组织工程下促血管... 背景:对于支架物理性质的研究始终是组织工程研究领域的热点,但对于促血管支架来说,除了要满足支架的基本性能外,还需要通过其他方法来促进血管在支架内的再生过程,以达到修复骨组织的最终目的。目的:对国内外发表的骨组织工程下促血管支架的文献进行可视化分析,探究该领域的研究热点及研究现状,为后续研究提供参考。方法:以中国知网及Web of Science核心集数据库为检索库,检索骨组织工程下促血管支架的相关文献,去除不符合纳入标准的文献,随后导入CiteSpace 6.1.R2软件,对研究领域的作者、国家机构及关键词进行可视化分析。结果与结论:①骨组织工程下促血管支架应用的研究中,发文量最多的前3个国家分别为中国、美国和德国。②中国知网数据库机构该领域研究发文量排名前3位分别为南方医科大学、华中科技大学、东华大学;Web of Science核心集数据库中机构发文量排名前3位分别为上海交通大学、四川大学、中国科学院。③中国知网数据库关键词频次排名前3位为“组织工程、血管化、血管生成”,Web of Science核心集数据库关键词频次排名前3位为“mesenchymal stem cell(间充质干细胞),scaffold(支架),vascularization(血管化)”。④参考文献共被引情况和高被引文献分析显示,该领域的血管化策略研究热点为支架设计、血管生成因子的输送、体外共培养和体内预血管化;技术方面研究热点为3D打印、静电纺丝、血管移植及血管融合;机制方面研究热点为免疫调节和巨噬细胞、药物/生长因子输送、内皮细胞和成骨细胞之间的关系、骨细胞和内皮细胞之间旁分泌关系及信号分子通路、血管生成和抗血管生成分子。⑤国内外骨组织工程下促血管支架应用研究均十分重视干细胞和3D打印技术的运用,而目前的研究热点主要为生物3D打印技术、支架改性修饰的方法以及基于骨修复机制智能生物材料的开发应用。 展开更多
关键词 骨组织工程 血管生成 支架 修饰 3D打印 生物材料 干细胞 复合支架 智能生物材料 可视化分析
下载PDF
3D打印关节软骨支架研究新进展
19
作者 晏紫 利时雨 +3 位作者 王艺霖 吴耀彬 李严兵 黄文华 《中国临床解剖学杂志》 CSCD 北大核心 2024年第3期341-346,共6页
软骨是由软骨细胞与细胞外基质组成的结缔组织,其细胞终末分化程度高,难以自行再生。退行性骨关节炎是老年人致残的主要原因,临床治疗方案分为药物治疗和软骨损伤修复术。药物治疗适用于轻症患者,有改善症状与改善结构延缓发展两种药物... 软骨是由软骨细胞与细胞外基质组成的结缔组织,其细胞终末分化程度高,难以自行再生。退行性骨关节炎是老年人致残的主要原因,临床治疗方案分为药物治疗和软骨损伤修复术。药物治疗适用于轻症患者,有改善症状与改善结构延缓发展两种药物;前者是以NSAIDs为代表的消炎止痛药物,后者包括硫酸氨基葡萄糖,硫酸软骨素及双醋瑞因等。药物治疗无效的患者可考虑手术治疗,软骨损伤修复技术包括:骨髓刺激技术、全膝关节置换术、自体或异体软骨移植术以及尚处于研究阶段的软骨细胞移植技术。 展开更多
关键词 3D打印 仿生支架 生物材料 软骨组织工程 关节软骨
下载PDF
Advances in extracellular vesicle-based combination therapies for spinal cord injury
20
作者 Tingting Wang Guohao Huang +3 位作者 Zhiheng Yi Sihan Dai Weiduan Zhuang Shaowei Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期369-374,共6页
Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none o... Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury. 展开更多
关键词 biomaterialS combination therapy drug delivery EXOSOMES extracellular vesicles functional recovery HYDROGELS scaffolds spinal cord injury tissue engineering
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部