Aprovecho is a non-profit research and education center dedicated to living,learning,organizing and educating to inspire a sustainable culture.Located on a forty acre land trust in the Coast Range outside of Cottage ...Aprovecho is a non-profit research and education center dedicated to living,learning,organizing and educating to inspire a sustainable culture.Located on a forty acre land trust in the Coast Range outside of Cottage Grove,Oregon,Aprovecho’s campus features a living demonstration of sustainable human settlement,organized around five core areas:food,shelter,water,forests,and energy.Aprovecho offers educational opportunities in all five of its core areas,including shelter through the Natural Building program.The Aprovecho Natural Building program trains students in the use of locally-sourced,non-toxic building materials for the construction of energy-efficient,affordable,healthy homes that work within natural communities and that enrich local economies.展开更多
INTRODUCTION Lowering the carbon intensity of the built environment is one of many tasks that must be undertaken in order to address climate change and to encourage sustainability.The siting,design,construction,occupa...INTRODUCTION Lowering the carbon intensity of the built environment is one of many tasks that must be undertaken in order to address climate change and to encourage sustainability.The siting,design,construction,occupancy,renovation,and disposal of single-family homes are all factors that contribute to the large carbon emissions generated by the sector.There are numerous strategies that seek to minimize the amount of emissions generated by a house during its lifecycle.This paper explores the use of so-called natural building systems in building envelope construction.展开更多
The thermal properties of different clay samples obtained from locations in Akwa Ibom State, Nigeria were investigated and compared, and in order to establish their suitability as building material from energy conserv...The thermal properties of different clay samples obtained from locations in Akwa Ibom State, Nigeria were investigated and compared, and in order to establish their suitability as building material from energy conservation point of view. The results showed that stoneware clay has the highest solar radiation absorptivity of 22 32 m -1 while kaolin clay has the lowest radiation absoptivity of 14 46 m -1 A model for the prediction of temperature variation with thickness of the samples was developed. Results showed that kaolin would make the best choice for the design of a naturally cooled building.展开更多
Interest in the engineering performance of bamboo is on the rise primarily due to its rapid regenerative qualities and high strength-to-weight ratio.It has been a standard,sustainable building material for thousands o...Interest in the engineering performance of bamboo is on the rise primarily due to its rapid regenerative qualities and high strength-to-weight ratio.It has been a standard,sustainable building material for thousands of years in Asia and South America,where it grows naturally.Although there are many examples of magnificent bamboo structures,standards and documentation on safe and reliable bamboo design are scarce,particularly for connection design.Traditional connections involve friction-tight lashings(eg.ropes and cords of dried grasses)and pin-and-socket connections such as dowels and pegs,but more recent advances have involved integration with steel hardware and concrete.This paper presents bamboo as a feasible alternative building material and presents a review of past,current and emerging technologies to join hollow bamboo culms in structural applications.The paper’s intent is to give an overview of the current state of bamboo connection technology and to promote developments in the emerging field of bamboo engineering.Recent technological advances and visionary architects have proven that it is possible to create safe structures that are not only sustainable but have tremendous potential for use in disaster relief and quick-build scenarios.展开更多
Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-cond...Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-conditioning.Therefore,it is important to study and explore effective means of ventilation to improve the building designs.This study investigates the thermal comfort of a naturally ventilated hostel operational building in the composite climate of Jaipur,India using Computational Fluid Dynamics(CFD)simulation tool‘Cradle scSTREAM’.A 3D building model has been developed to analyze the thermal comfort for different natural ventilation strategies with advanced mesh algorithms which generate fewer mesh elements and maintain good mesh quality.A field study was carried out to collect the actual data and to validate the model which was further used to evaluate the thermal comfort range based on the ASHRAE-55 standard.Several design strategies have been applied to enhance thermal comfort.It was found that an increase in air velocity up to 0.5 m/s was achieved by Cross Ventilation while a drop of 2.0-2.5℃in the air temperature was found using Night Ventilation.It can be stated that cross ventilation increases the air movement while night ventilation gives comparatively higher comfort regarding air temperature and relative humidity.展开更多
Thermal comfort is an important factor in hostel buildings when the aim is to maximize the productivity of the students.Due to the extreme weather conditions,achieving thermal comfort in a hostel building in a hot and...Thermal comfort is an important factor in hostel buildings when the aim is to maximize the productivity of the students.Due to the extreme weather conditions,achieving thermal comfort in a hostel building in a hot and humid climate is even more difficult.Studies conducted in naturally ventilated hostel buildings in warm-humid climates involved the influence of outdoor air temperature only up to 34.4℃ and have been conducted in a specific season.In contrast,the Tiruchirappalli climate is characterized by a higher range of environmental variables.Therefore,to understand the thermal comfort conditions and usage of the environmental controls in naturally ventilated hostel buildings at the higher range of the environmental variables,a thermal comfort field study spread over one year was carried out at the National Institute of Technology,Tiruchirappalli,India,in twenty-seven hostel buildings.This study relies on field observation and thermal comfort responses from 2028 questionnaires collected from the students between September 2019 to August 2020.The analysis revealed a neutral temperature of 29.5℃ and a comfort range from 26.1℃ to 32.8℃,indicating a wide range of ther-mal adaptation than suggested by the National Building Code of India and ASHRAE standard 55.The preferred temperature was 27.8℃,indicating that students preferred a cooler environment.Acceptability with sweating conditions extended the upper limit of thermal acceptability from 31.8℃ to 32.4℃.The use of a mosquito net can increase the probability of opening a window.Results indicated that overall behavioral adjustment could extend the comfort limits.The study results would be helpful to develop guidelines and designs for naturally ventilated hostel buildings in warm and humid climates that will contribute to reducing energy demand.展开更多
文摘Aprovecho is a non-profit research and education center dedicated to living,learning,organizing and educating to inspire a sustainable culture.Located on a forty acre land trust in the Coast Range outside of Cottage Grove,Oregon,Aprovecho’s campus features a living demonstration of sustainable human settlement,organized around five core areas:food,shelter,water,forests,and energy.Aprovecho offers educational opportunities in all five of its core areas,including shelter through the Natural Building program.The Aprovecho Natural Building program trains students in the use of locally-sourced,non-toxic building materials for the construction of energy-efficient,affordable,healthy homes that work within natural communities and that enrich local economies.
文摘INTRODUCTION Lowering the carbon intensity of the built environment is one of many tasks that must be undertaken in order to address climate change and to encourage sustainability.The siting,design,construction,occupancy,renovation,and disposal of single-family homes are all factors that contribute to the large carbon emissions generated by the sector.There are numerous strategies that seek to minimize the amount of emissions generated by a house during its lifecycle.This paper explores the use of so-called natural building systems in building envelope construction.
文摘The thermal properties of different clay samples obtained from locations in Akwa Ibom State, Nigeria were investigated and compared, and in order to establish their suitability as building material from energy conservation point of view. The results showed that stoneware clay has the highest solar radiation absorptivity of 22 32 m -1 while kaolin clay has the lowest radiation absoptivity of 14 46 m -1 A model for the prediction of temperature variation with thickness of the samples was developed. Results showed that kaolin would make the best choice for the design of a naturally cooled building.
文摘Interest in the engineering performance of bamboo is on the rise primarily due to its rapid regenerative qualities and high strength-to-weight ratio.It has been a standard,sustainable building material for thousands of years in Asia and South America,where it grows naturally.Although there are many examples of magnificent bamboo structures,standards and documentation on safe and reliable bamboo design are scarce,particularly for connection design.Traditional connections involve friction-tight lashings(eg.ropes and cords of dried grasses)and pin-and-socket connections such as dowels and pegs,but more recent advances have involved integration with steel hardware and concrete.This paper presents bamboo as a feasible alternative building material and presents a review of past,current and emerging technologies to join hollow bamboo culms in structural applications.The paper’s intent is to give an overview of the current state of bamboo connection technology and to promote developments in the emerging field of bamboo engineering.Recent technological advances and visionary architects have proven that it is possible to create safe structures that are not only sustainable but have tremendous potential for use in disaster relief and quick-build scenarios.
文摘Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-conditioning.Therefore,it is important to study and explore effective means of ventilation to improve the building designs.This study investigates the thermal comfort of a naturally ventilated hostel operational building in the composite climate of Jaipur,India using Computational Fluid Dynamics(CFD)simulation tool‘Cradle scSTREAM’.A 3D building model has been developed to analyze the thermal comfort for different natural ventilation strategies with advanced mesh algorithms which generate fewer mesh elements and maintain good mesh quality.A field study was carried out to collect the actual data and to validate the model which was further used to evaluate the thermal comfort range based on the ASHRAE-55 standard.Several design strategies have been applied to enhance thermal comfort.It was found that an increase in air velocity up to 0.5 m/s was achieved by Cross Ventilation while a drop of 2.0-2.5℃in the air temperature was found using Night Ventilation.It can be stated that cross ventilation increases the air movement while night ventilation gives comparatively higher comfort regarding air temperature and relative humidity.
文摘Thermal comfort is an important factor in hostel buildings when the aim is to maximize the productivity of the students.Due to the extreme weather conditions,achieving thermal comfort in a hostel building in a hot and humid climate is even more difficult.Studies conducted in naturally ventilated hostel buildings in warm-humid climates involved the influence of outdoor air temperature only up to 34.4℃ and have been conducted in a specific season.In contrast,the Tiruchirappalli climate is characterized by a higher range of environmental variables.Therefore,to understand the thermal comfort conditions and usage of the environmental controls in naturally ventilated hostel buildings at the higher range of the environmental variables,a thermal comfort field study spread over one year was carried out at the National Institute of Technology,Tiruchirappalli,India,in twenty-seven hostel buildings.This study relies on field observation and thermal comfort responses from 2028 questionnaires collected from the students between September 2019 to August 2020.The analysis revealed a neutral temperature of 29.5℃ and a comfort range from 26.1℃ to 32.8℃,indicating a wide range of ther-mal adaptation than suggested by the National Building Code of India and ASHRAE standard 55.The preferred temperature was 27.8℃,indicating that students preferred a cooler environment.Acceptability with sweating conditions extended the upper limit of thermal acceptability from 31.8℃ to 32.4℃.The use of a mosquito net can increase the probability of opening a window.Results indicated that overall behavioral adjustment could extend the comfort limits.The study results would be helpful to develop guidelines and designs for naturally ventilated hostel buildings in warm and humid climates that will contribute to reducing energy demand.