Short sequence repeats(microsatellite,SSR) and expressed sequence tags-SSR(EST-SSR) markers were employed to analyze the genetic diversity of natural colored cotton varieties.About
The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major ge...The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major genes, respectively. Production and accumulation of the fiber pigment were related to special expression of enzymatic genes for pigment synthesis in fiber cells. At the stage of fiber lengthening, naturally colored cotton, like white cotton, appeared purely white. But when fiber cell walls entered the thickening stage, pigment appeared by degrees. When the fiber was completely matured (on boll dehiscence), the color reached its darkest level. After wetting process treatment, the hues of the fiber pigment changed in regular patterns. The hue circle for brown and green cotton changed in the opposite direction with wetting process treatment. In general, the treated cotton color and luster became dark and vivid, and this trend provided the possibility for enhancing the fiber quality by suitable environmental friendly finishing. The analysis showed that the color and luster of the cotton may be controlled by a series of pigments which show different chemical performance.展开更多
Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,ar...Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation.展开更多
This paper studies desizing and polishing of naturally colored cotton with different enzyme. The reactivity of cellulases was measured. The percentage of decrement, bulkiness and color difference of fabrics both befor...This paper studies desizing and polishing of naturally colored cotton with different enzyme. The reactivity of cellulases was measured. The percentage of decrement, bulkiness and color difference of fabrics both before and after eco-finishing were tested. The reasons were analyzed. The results indicates that the desizing of amylase can be applied on naturally colored cotton, and cellulases have polishing effect on it. Moreover eco-finishing with enzyme can provide many better properties to naturally colored cotton than that of normal finishing. Also this process has no pollution as enzyme can be degraded by bioreaction.展开更多
文摘Short sequence repeats(microsatellite,SSR) and expressed sequence tags-SSR(EST-SSR) markers were employed to analyze the genetic diversity of natural colored cotton varieties.About
基金This work was supported by Innovation and Utilization of Specially Good Germplasm Material of Naturally Colored Cotton of the“863”Plan,China(2001AA241089)Research on Breeding of New Variety for Naturally Colored Cotton and Its Further Utilization of Zhejiang Key Project of Science and Technology,China(991102310,010007024).
文摘The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major genes, respectively. Production and accumulation of the fiber pigment were related to special expression of enzymatic genes for pigment synthesis in fiber cells. At the stage of fiber lengthening, naturally colored cotton, like white cotton, appeared purely white. But when fiber cell walls entered the thickening stage, pigment appeared by degrees. When the fiber was completely matured (on boll dehiscence), the color reached its darkest level. After wetting process treatment, the hues of the fiber pigment changed in regular patterns. The hue circle for brown and green cotton changed in the opposite direction with wetting process treatment. In general, the treated cotton color and luster became dark and vivid, and this trend provided the possibility for enhancing the fiber quality by suitable environmental friendly finishing. The analysis showed that the color and luster of the cotton may be controlled by a series of pigments which show different chemical performance.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ21C130004)the National Natural Science Foundation of China(U1903204)he Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University(KYY2021004S)。
文摘Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation.
文摘This paper studies desizing and polishing of naturally colored cotton with different enzyme. The reactivity of cellulases was measured. The percentage of decrement, bulkiness and color difference of fabrics both before and after eco-finishing were tested. The reasons were analyzed. The results indicates that the desizing of amylase can be applied on naturally colored cotton, and cellulases have polishing effect on it. Moreover eco-finishing with enzyme can provide many better properties to naturally colored cotton than that of normal finishing. Also this process has no pollution as enzyme can be degraded by bioreaction.