Passive residual heat removal heat exchanger(PRHR HX),which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400,plays an important role in critical accidental conditions.The primary and second...Passive residual heat removal heat exchanger(PRHR HX),which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400,plays an important role in critical accidental conditions.The primary and secondary side coupling heat transfer characteristics of the passive residual heat removal system(PRHRS)determine the capacity to remove core decay heat during the accidents.Therefore,it is necessary to investigate the heat transfer characteristics and develop applicable heat transfer formulas for optimized design.In the present paper,an overall scaled-down natural circulation loop of PRHRS in AP1000,which comprises a scaleddown in-containment refueling water storage tank(IRWST)and PRHR HX models and a simulator of the reactor core,is built to simulate the natural circulation process in residual heat removal accidents.A series of experiments are conducted to study thermal-hydraulic behaviors in both sides of the miniaturized PRHR HX which is simulated by 12 symmetric arranged C-shape tubes.For the local PRHR HX heat transfer performance,traditional natural convection correlations for both the horizontal and vertical bundles are compared with the experimental data to validate their applicability for the specific heat transfer condition.Moreover,the revised natural convection heat transfer correlations based on the present experimental data are developed for PRHR HX vertical and lower horizontal bundles.This paper provides essential references for the PRHRS operation and further optimized design.展开更多
A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present ...A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present method,the elastic dynamic equations and acoustic equation in heterogeneous medium are solved in solid domains and fluid domains respectively.The structural-acoustic coupling is implemented according to the continuity condition of the particle velocity along the normal direction and the normal traction equilibrium condition on the interface.Several numerical examples are presented to validate the effectiveness and accuracy of the present TDFVM.Then the effects of water depth on the acoustic and vibration characteristics and the natural characteristics of a structural-acoustic coupling system are analyzed.The numerical results show that the increase of water depth leads to a stronger coupling between the water and structure and the decrease of natural frequencies of coupling system,The computational cost and memory of this method are small and it can be applicable to structural-acoustic coupling problems in the heterogeneous fluid.展开更多
This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility...This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility networks,multiple distributed energy stations(DESs),and multiple energy users(EUs).The HMOGTA aims to solve the coordinated operation strategy of the electricity and natural gas networks considering the demand characteristics of DESs and EUs.In the HMOGTA,a hierarchical Stackelberg game model is developed for generating equilibrium strategies of DESs and EUs in each district energy network(DEN).Based on the game results,we obtain the coupling demand constraints of electricity and natural gas(CDCENs)which reflect the relationship between the amounts and prices of electricity and cooling(E&C)that DESs purchase from utility networks.Furthermore,the minimization of conflicting costs of E&G networks considering the CDCENs are solved by a multi-objective optimization method.A case study is conducted on a test IES composed of a 20-node natural gas network,a modified IEEE 30-bus system,and 3 DENs,which verifies the effectiveness of the proposed HMOGTA to realize fair treatment for all participants in the IES.展开更多
Introduction:The application of remote-sensing techniques for water quality assessment has become increasingly popular in China.However,existing reviews are often limited to qualitative description and are quite fragm...Introduction:The application of remote-sensing techniques for water quality assessment has become increasingly popular in China.However,existing reviews are often limited to qualitative description and are quite fragmented.Outcomes:We conducted a quantitative systematic review to display current research status and identify the existing challenges and future directions.Our review revealed that the application of remote-sensing techniques in water quality research has expanded dramatically in China,but the spatial distribution is quite uneven.Second,the ground object spectrometer is the most widely applied data source.Water color indicators such as chlorophyll a and suspended solid are the most widely investigated in China.Third,semiempirical method is the most commonly used inversion method.Existing studies rarely considered the anthropogenic factors,which limited the model robustness and its application in humandominated aquatic ecosystems.Discussion and Conclusion:We concluded that,in the past several decades,China has made notable progresses in monitoring and evaluation of water quality using the remote-sensing techniques(especially in inland lakes).We proposed that further improvements would be needed in terms of temporal and spatial coverage,indicator list,the incorporation of human–nature interactions,inversion accuracy,and model generalization.展开更多
The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to hav...The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to have a significant impact on the other. Therefore, it is necessary to study the variation of state variables when random fluctuations emerge in the coupled system. In this paper, a multislack-bus model is proposed to calculate the power and gas flow in the coupled system. A unified probabilistic power and gas flow calculation, in which the cumulant method and Gram–Charlier expansion are applied, is first presented to obtain the distribution of state variables after considering the effects of uncertain factors. When the variation range of random factors is too large, a new method of piecewise linearization is put forward to achieve a better fitting precision of probability distribution. Compared to the Monte Carlo method, the proposed method can reduce computation time greatly while reaching a satisfactory accuracy.The validity of the proposed methods is verified in a coupled system that consists of a 15-node natural gas system and the IEEE case24 power system.展开更多
Understanding the interactions between humans and nature in the Anthropocene is central to the quest for both human wellbeing and global sustainability.However,the time-space compression,long range interactions,and re...Understanding the interactions between humans and nature in the Anthropocene is central to the quest for both human wellbeing and global sustainability.However,the time-space compression,long range interactions,and reconstruction of socio-economic structures at the global scale all pose great challenges to the traditional analytical frameworks of human-nature systems.In this paper,we extend the connotation of coupled human and natural systems(CHANS)and their four dimensions—space,time,appearance,and organization,and propose a novel framework:“Coupled Human and Natural Cube”(CHNC)to explain the coupling mechanism between humans and the natural environment.Our proposition is inspired by theories based on the human-earth areal system,telecoupling framework,planetary urbanization,and perspectives from complexity science.We systematically introduce the concept,connotation,evolution rules,and analytical dimensions of the CHNC.Notably there exist various“coupling lines”in the CHNC,connecting different systems and elements at multiple scales and forming a large,nested,interconnected,organic system.The rotation of the CHNC represents spatiotemporal nonlinear fluctuations in CHANS in different regions.As a system continually exchanges energy with the environment,a critical phase transition occurs when fluctuations reach a certain threshold,leading to emergent behavior of the system.The CHNC has four dimensions—pericoupling and telecoupling,syncoupling and lagcoupling,apparent coupling and hidden coupling,and intra-organization coupling and inter-organizational coupling.We mainly focus on the theoretical connotation,research methods,and typical cases of telecoupling,lagcoupling,hidden coupling,and inter-organizational coupling,and put forward a human-nature coupling matrix to integrate multiple dimensions.In summary,the CHNC provides a more comprehensive and systematic research paradigm for understanding the evolution and coupling mechanism of the human-nature system,which expands the analytical dimension of CHANS.The CHNC also provides a theoretical support for formulating regional,sustainable development policies for human wellbeing.展开更多
The coupling of humans and nature differs in terms of distribution and intensity, thus producing a gradient of synthetic geographical environments. Within this variety of gradients, the transitional zone represents a ...The coupling of humans and nature differs in terms of distribution and intensity, thus producing a gradient of synthetic geographical environments. Within this variety of gradients, the transitional zone represents a complex space where dynamic processes and unstable conditions are observed. Based on the concepts of ecotone and transitional zone, we propose a conceptual framework for the transitional geospace of coupled human and natural systems and a quantitative identification method for the zone. Taking the Sichuan Basin as an example, this study defined the strength and direction of the coupling of the natural ecosystem and socioeconomic system and divided different types of transitional geospace. The transitional geospace of the strong coupling type accounted for approximately 16.7% of the study area. Nine of the ten counties with the largest proportion of the type were formerly nationally poor counties in the study area. In the strong coupling type, human and nature jointly explained a high proportion of the variance in transitional stability(e.g., in Shifang city, with an unexplained proportion of 1.7%). The discovery and characterization of the transitional geospace types is crucial for facilitating more effective land use planning and sustainable balance among the population, resources, and environment.展开更多
Traditional farming landscapes have evolved as tightly coupled socioecological systems that support high biodiversity.However,land-use change severely threatens the high biodiversity of these landscapes.Navigating nat...Traditional farming landscapes have evolved as tightly coupled socioecological systems that support high biodiversity.However,land-use change severely threatens the high biodiversity of these landscapes.Navigating nature conservation in such landscapes requires a thorough understanding of the key drivers underpinning biodiversity.Through empirical research on mammals,birds,butterflies,and plants in a traditional cultural landscape in Romania,we revealed seven hypothesized drivers facilitating biodiversity conservation.Similar proportions of three main land-use types support the landscape species pool,most likely through habitat connectivity and frequent spillover between land-use types.Landscape complementation and supplementation provide additional habitat for species outside their core habitats.Gradients of woody vegetation cover and gradients in land-cover heterogeneity provide mosaic landscapes with wide ranges of resources.Traditional land-use practices underpin landscape heterogeneity,traditional land-use elements such as wood pastures,and human-carnivore coexistence.Top-down predator control may limit herbivore populations.Lastly,cultural ties between humans and nature have a central influence on people’s values and sustainable use of natural resources.Conservation approaches should aim to maintain or restore these socioecological drivers by targeting the heterogeneous character of the forest-farmland mosaic at large scales through"broad and shallow"conservation measures.These large-scale measures should be complemented with"deep and narrow"conservation measures addressing specific land-use types,threats,or species.In both cases,conservation measures should integrate the entire socioecological system,by recognizing and strengthening important links between people and the environment.展开更多
基金the National Science and Technology Major Project of China(Grant No.2017ZX06004002-006-002)the National Natural Science Foundation of China(Grant No.51906069)。
文摘Passive residual heat removal heat exchanger(PRHR HX),which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400,plays an important role in critical accidental conditions.The primary and secondary side coupling heat transfer characteristics of the passive residual heat removal system(PRHRS)determine the capacity to remove core decay heat during the accidents.Therefore,it is necessary to investigate the heat transfer characteristics and develop applicable heat transfer formulas for optimized design.In the present paper,an overall scaled-down natural circulation loop of PRHRS in AP1000,which comprises a scaleddown in-containment refueling water storage tank(IRWST)and PRHR HX models and a simulator of the reactor core,is built to simulate the natural circulation process in residual heat removal accidents.A series of experiments are conducted to study thermal-hydraulic behaviors in both sides of the miniaturized PRHR HX which is simulated by 12 symmetric arranged C-shape tubes.For the local PRHR HX heat transfer performance,traditional natural convection correlations for both the horizontal and vertical bundles are compared with the experimental data to validate their applicability for the specific heat transfer condition.Moreover,the revised natural convection heat transfer correlations based on the present experimental data are developed for PRHR HX vertical and lower horizontal bundles.This paper provides essential references for the PRHRS operation and further optimized design.
基金supported by the Fundamental Research Funds for the Central Universities(HEUCF100307)the National Natural Science Foundation of China(51279035)
文摘A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present method,the elastic dynamic equations and acoustic equation in heterogeneous medium are solved in solid domains and fluid domains respectively.The structural-acoustic coupling is implemented according to the continuity condition of the particle velocity along the normal direction and the normal traction equilibrium condition on the interface.Several numerical examples are presented to validate the effectiveness and accuracy of the present TDFVM.Then the effects of water depth on the acoustic and vibration characteristics and the natural characteristics of a structural-acoustic coupling system are analyzed.The numerical results show that the increase of water depth leads to a stronger coupling between the water and structure and the decrease of natural frequencies of coupling system,The computational cost and memory of this method are small and it can be applicable to structural-acoustic coupling problems in the heterogeneous fluid.
基金This work was supported by the State Key Program of National Natural Science Foundation of China(Grant No.51437006)the Natural Science Foundation of Guangdong Province,China(2018A030313799).
文摘This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility networks,multiple distributed energy stations(DESs),and multiple energy users(EUs).The HMOGTA aims to solve the coordinated operation strategy of the electricity and natural gas networks considering the demand characteristics of DESs and EUs.In the HMOGTA,a hierarchical Stackelberg game model is developed for generating equilibrium strategies of DESs and EUs in each district energy network(DEN).Based on the game results,we obtain the coupling demand constraints of electricity and natural gas(CDCENs)which reflect the relationship between the amounts and prices of electricity and cooling(E&C)that DESs purchase from utility networks.Furthermore,the minimization of conflicting costs of E&G networks considering the CDCENs are solved by a multi-objective optimization method.A case study is conducted on a test IES composed of a 20-node natural gas network,a modified IEEE 30-bus system,and 3 DENs,which verifies the effectiveness of the proposed HMOGTA to realize fair treatment for all participants in the IES.
基金This work was supported by the National Natural Science Foundation of China[71673247]the Outstanding Youth Fund of Zhejiang Province[LR18D010001]+1 种基金Ministry of Science and Technology of China[2016YFC0503404]Fundamental Research Funds for the Central Universities[2017QNA6010].
文摘Introduction:The application of remote-sensing techniques for water quality assessment has become increasingly popular in China.However,existing reviews are often limited to qualitative description and are quite fragmented.Outcomes:We conducted a quantitative systematic review to display current research status and identify the existing challenges and future directions.Our review revealed that the application of remote-sensing techniques in water quality research has expanded dramatically in China,but the spatial distribution is quite uneven.Second,the ground object spectrometer is the most widely applied data source.Water color indicators such as chlorophyll a and suspended solid are the most widely investigated in China.Third,semiempirical method is the most commonly used inversion method.Existing studies rarely considered the anthropogenic factors,which limited the model robustness and its application in humandominated aquatic ecosystems.Discussion and Conclusion:We concluded that,in the past several decades,China has made notable progresses in monitoring and evaluation of water quality using the remote-sensing techniques(especially in inland lakes).We proposed that further improvements would be needed in terms of temporal and spatial coverage,indicator list,the incorporation of human–nature interactions,inversion accuracy,and model generalization.
基金supported by National Key Research and Development Program of China(No.2016YFB0901903)Key Program of National Natural Science Foundation of China(No.51637008)State Key Laboratory of Electrical Insulation and Power Equipment in Xi’an Jiaotong University(No.EIPE14106)
文摘The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to have a significant impact on the other. Therefore, it is necessary to study the variation of state variables when random fluctuations emerge in the coupled system. In this paper, a multislack-bus model is proposed to calculate the power and gas flow in the coupled system. A unified probabilistic power and gas flow calculation, in which the cumulant method and Gram–Charlier expansion are applied, is first presented to obtain the distribution of state variables after considering the effects of uncertain factors. When the variation range of random factors is too large, a new method of piecewise linearization is put forward to achieve a better fitting precision of probability distribution. Compared to the Monte Carlo method, the proposed method can reduce computation time greatly while reaching a satisfactory accuracy.The validity of the proposed methods is verified in a coupled system that consists of a 15-node natural gas system and the IEEE case24 power system.
基金Program of the National Natural Science Foundation of China,No.41590842,No.41801164China Postdoctoral Science Foundation,No.2018M630196。
文摘Understanding the interactions between humans and nature in the Anthropocene is central to the quest for both human wellbeing and global sustainability.However,the time-space compression,long range interactions,and reconstruction of socio-economic structures at the global scale all pose great challenges to the traditional analytical frameworks of human-nature systems.In this paper,we extend the connotation of coupled human and natural systems(CHANS)and their four dimensions—space,time,appearance,and organization,and propose a novel framework:“Coupled Human and Natural Cube”(CHNC)to explain the coupling mechanism between humans and the natural environment.Our proposition is inspired by theories based on the human-earth areal system,telecoupling framework,planetary urbanization,and perspectives from complexity science.We systematically introduce the concept,connotation,evolution rules,and analytical dimensions of the CHNC.Notably there exist various“coupling lines”in the CHNC,connecting different systems and elements at multiple scales and forming a large,nested,interconnected,organic system.The rotation of the CHNC represents spatiotemporal nonlinear fluctuations in CHANS in different regions.As a system continually exchanges energy with the environment,a critical phase transition occurs when fluctuations reach a certain threshold,leading to emergent behavior of the system.The CHNC has four dimensions—pericoupling and telecoupling,syncoupling and lagcoupling,apparent coupling and hidden coupling,and intra-organization coupling and inter-organizational coupling.We mainly focus on the theoretical connotation,research methods,and typical cases of telecoupling,lagcoupling,hidden coupling,and inter-organizational coupling,and put forward a human-nature coupling matrix to integrate multiple dimensions.In summary,the CHNC provides a more comprehensive and systematic research paradigm for understanding the evolution and coupling mechanism of the human-nature system,which expands the analytical dimension of CHANS.The CHNC also provides a theoretical support for formulating regional,sustainable development policies for human wellbeing.
基金The Key Programme of National Natural Science Foundation of China,No.41930651。
文摘The coupling of humans and nature differs in terms of distribution and intensity, thus producing a gradient of synthetic geographical environments. Within this variety of gradients, the transitional zone represents a complex space where dynamic processes and unstable conditions are observed. Based on the concepts of ecotone and transitional zone, we propose a conceptual framework for the transitional geospace of coupled human and natural systems and a quantitative identification method for the zone. Taking the Sichuan Basin as an example, this study defined the strength and direction of the coupling of the natural ecosystem and socioeconomic system and divided different types of transitional geospace. The transitional geospace of the strong coupling type accounted for approximately 16.7% of the study area. Nine of the ten counties with the largest proportion of the type were formerly nationally poor counties in the study area. In the strong coupling type, human and nature jointly explained a high proportion of the variance in transitional stability(e.g., in Shifang city, with an unexplained proportion of 1.7%). The discovery and characterization of the transitional geospace types is crucial for facilitating more effective land use planning and sustainable balance among the population, resources, and environment.
文摘Traditional farming landscapes have evolved as tightly coupled socioecological systems that support high biodiversity.However,land-use change severely threatens the high biodiversity of these landscapes.Navigating nature conservation in such landscapes requires a thorough understanding of the key drivers underpinning biodiversity.Through empirical research on mammals,birds,butterflies,and plants in a traditional cultural landscape in Romania,we revealed seven hypothesized drivers facilitating biodiversity conservation.Similar proportions of three main land-use types support the landscape species pool,most likely through habitat connectivity and frequent spillover between land-use types.Landscape complementation and supplementation provide additional habitat for species outside their core habitats.Gradients of woody vegetation cover and gradients in land-cover heterogeneity provide mosaic landscapes with wide ranges of resources.Traditional land-use practices underpin landscape heterogeneity,traditional land-use elements such as wood pastures,and human-carnivore coexistence.Top-down predator control may limit herbivore populations.Lastly,cultural ties between humans and nature have a central influence on people’s values and sustainable use of natural resources.Conservation approaches should aim to maintain or restore these socioecological drivers by targeting the heterogeneous character of the forest-farmland mosaic at large scales through"broad and shallow"conservation measures.These large-scale measures should be complemented with"deep and narrow"conservation measures addressing specific land-use types,threats,or species.In both cases,conservation measures should integrate the entire socioecological system,by recognizing and strengthening important links between people and the environment.