Noble gases in natural gas, from Xiaoquan, Xinchang, Hexingchang and Fenggu gas reservoirs in the middle part of the western Sichuan Depression, China, were analysed. Results show that the volume content of crustal no...Noble gases in natural gas, from Xiaoquan, Xinchang, Hexingchang and Fenggu gas reservoirs in the middle part of the western Sichuan Depression, China, were analysed. Results show that the volume content of crustal noble gases accounts for 97.9% to 99.7% of the total noble gas content, indicating that the noble gases in the study area are very largely derived from the crust. Moreover, the 40Ar time-accumulating effect of source rocks is used to determine the complex relationship between gases and source rocks in this area, and the results agree well with that from analysis of source rock light hydrocarbons. Due to the short migration distance, the separation of 4He and 40Ar is not significant in Xujiahe natural gas and Lower and Middle Jurassic natural gas, so it is difficult to trace natural gas migration. However, this separation characteristic of 4He and 40Ar in Middle and Upper Jurassic natural gas is significant, which indicates that natural gas migration was from the Middle Jurassic to Upper Jurassic formations. In addition, the variation trends of 3He/4He ratio and δ13C1 value indicates that natural gas migration is from the Xujiahe formation to the Jurassic layer in the study area.展开更多
The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is main...The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%-98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5th member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4th member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3rd and 4th members of the Xujiahe Formation. The gases reservoired in the 2nd member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4th member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.展开更多
基金supported by the National Natural Science Foundation of China (41172119)
文摘Noble gases in natural gas, from Xiaoquan, Xinchang, Hexingchang and Fenggu gas reservoirs in the middle part of the western Sichuan Depression, China, were analysed. Results show that the volume content of crustal noble gases accounts for 97.9% to 99.7% of the total noble gas content, indicating that the noble gases in the study area are very largely derived from the crust. Moreover, the 40Ar time-accumulating effect of source rocks is used to determine the complex relationship between gases and source rocks in this area, and the results agree well with that from analysis of source rock light hydrocarbons. Due to the short migration distance, the separation of 4He and 40Ar is not significant in Xujiahe natural gas and Lower and Middle Jurassic natural gas, so it is difficult to trace natural gas migration. However, this separation characteristic of 4He and 40Ar in Middle and Upper Jurassic natural gas is significant, which indicates that natural gas migration was from the Middle Jurassic to Upper Jurassic formations. In addition, the variation trends of 3He/4He ratio and δ13C1 value indicates that natural gas migration is from the Xujiahe formation to the Jurassic layer in the study area.
基金financially supported by the National Natural Science Foundation of China (grants No.41625009, 41302118 and U1663201)the National Key Foundational Research and Development Project (Grant No:2016YFB0600804)the National Science & Technology Special Project (grant No.2016ZX05002-006)
文摘The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%-98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5th member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4th member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3rd and 4th members of the Xujiahe Formation. The gases reservoired in the 2nd member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4th member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.