The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of sourc...The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of source rocks. Up to date, the source of gas or the main source rocks of the Mull gas hydrates have remained unclear.展开更多
Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons...Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons and multiple sets of mature and over-mature source rocks.Gas sources of these gas hydrates in the study area include coal-type gas and oil-type gas.展开更多
The Qinghai-Tibet Plateau(also referred to as the Plateau)is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas ...The Qinghai-Tibet Plateau(also referred to as the Plateau)is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas hydrates(NGH).Up to now,one NGH accumulation,two inferred NGH accumulations,and a series of NGH-related anomalous indicators have been discovered in the Plateau,with NGH resources predicted to be up to 8.88×10^(12) m^(3).The NGH in the Qinghai-Tibet Plateau have complex gas components and are dominated by deep thermogenic gas.They occur in the Permian-Jurassic strata and are subject to thin permafrost and sensitive to environment.Furthermore,they are distinctly different from the NGH in the high-latitude permafrost in the arctic regions and are more different from marine NGH.The formation of the NGH in the Plateau obviously couples with the uplift and permafrost evolution of the Plateau in spatial-temporal terms.The permafrost and NGH in the Qilian Mountains and the main body of the Qinghai-Tibet Plateau possibly formed during 2.0–1.28 Ma BP and about 0.8 Ma BP,respectively.Under the context of global warming,the permafrost in the Qinghai-Tibet Plateau is continually degrading,which will lead to the changes in the stability of NGH.Therefore,The NGH of the Qinghai-Tibet Plateau can not be ignored in the study of the global climate change and ecological environment.展开更多
基金financially supported by the National Natural Science Foundation of China(grant No.41273066)
文摘The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of source rocks. Up to date, the source of gas or the main source rocks of the Mull gas hydrates have remained unclear.
基金financially supported by the National Science Foundation of china(Grant No.41273066)
文摘Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons and multiple sets of mature and over-mature source rocks.Gas sources of these gas hydrates in the study area include coal-type gas and oil-type gas.
基金the China Geological Survey entitled Comprehensive Survey of Terrestrial NGH Resources(DD20190102).
文摘The Qinghai-Tibet Plateau(also referred to as the Plateau)is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas hydrates(NGH).Up to now,one NGH accumulation,two inferred NGH accumulations,and a series of NGH-related anomalous indicators have been discovered in the Plateau,with NGH resources predicted to be up to 8.88×10^(12) m^(3).The NGH in the Qinghai-Tibet Plateau have complex gas components and are dominated by deep thermogenic gas.They occur in the Permian-Jurassic strata and are subject to thin permafrost and sensitive to environment.Furthermore,they are distinctly different from the NGH in the high-latitude permafrost in the arctic regions and are more different from marine NGH.The formation of the NGH in the Plateau obviously couples with the uplift and permafrost evolution of the Plateau in spatial-temporal terms.The permafrost and NGH in the Qilian Mountains and the main body of the Qinghai-Tibet Plateau possibly formed during 2.0–1.28 Ma BP and about 0.8 Ma BP,respectively.Under the context of global warming,the permafrost in the Qinghai-Tibet Plateau is continually degrading,which will lead to the changes in the stability of NGH.Therefore,The NGH of the Qinghai-Tibet Plateau can not be ignored in the study of the global climate change and ecological environment.