期刊文献+
共找到166篇文章
< 1 2 9 >
每页显示 20 50 100
New insights into the deposition of natural gas hydrate on pipeline surfaces:A molecular dynamics simulation study
1
作者 Jun Zhang Hai-Qiang Fu +7 位作者 Mu-Zhi Guo Zhao Wang Li-Wen Li Qi Yin You-Guo Yan Wei Wei Wei-Feng Han Jie Zhong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期694-704,共11页
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N... Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces. 展开更多
关键词 DEPOSITION natural gas hydrate Pipelines Water affinity Adhesion strength
下载PDF
Rheological study of methane gas hydrates in the presence of micron-sized sand particles
2
作者 Bohui Shi Shangfei Song +6 位作者 Yuchuan Chen Shunkang Fu Lihao Liu Xinyao Yang Haihao Wu Guangjin Chen Jing Gong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期149-161,共13页
Natural gas hydrates,intricate crystalline structures formed by water molecules and small gas molecules,have emerged as a significant and globally impactful clean energy resource.However,their commercial exploitation ... Natural gas hydrates,intricate crystalline structures formed by water molecules and small gas molecules,have emerged as a significant and globally impactful clean energy resource.However,their commercial exploitation faces challenges,particularly operational disruptions caused by sand-related blockages.Understanding the rheological properties of hydrate slurry,especially in the presence of micron-sized sand particles,is imperative for ensuring the flow assurance of subsea hydrate exploitation.This study extensively investigates the rheological properties of sand-containing hydrate slurries.The findings reveal that these slurries exhibit non-Newtonian fluid characteristics,including yield stress,thixotropy,and shear-thinning behavior.Solid-like elastic features are observed in sand-containing hydrate slurries before yielding,transitioning to viscous behavior after yielding.Even with a minimal amount of sand,both static yield stress and yield strain experience substantial changes,correlating with the increase in sand concentration.The research conclusively establishes the thixotropic nature of sand-hydrate slurries,where the viscosity decay rate is directly influenced by the shear rate.These insights aim to contribute comprehensively to the development of effective flow assurance strategies,ensuring the safe and stable operation of subsea hydrate exploitation. 展开更多
关键词 natural gas hydrate production Sand-containing hydrate slurries Yield stress THIXOTROPY Shear-thinning behavior
下载PDF
Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas
3
作者 Hongzhi Xu Jian Wang +3 位作者 Shuxia Li Fengrui Zhao Chengwen Wang Yang Guo 《Fluid Dynamics & Materials Processing》 EI 2024年第3期505-523,共19页
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti... Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio. 展开更多
关键词 natural gas hydrate conventional gas coexistence accumulation DEPRESSURIZATION combined production
下载PDF
Geological reservoir and resource potential(10^(13)m^(3))of gas hydrates in the South China Sea
4
作者 Pi-bo Su Wei Wei +5 位作者 Yun-bao Sun Yao-yao Lü Huai Cheng Wei-feng Han Wei Zhang Jin-qiang Liang 《China Geology》 CAS CSCD 2024年第3期422-444,共23页
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ... A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs. 展开更多
关键词 Reservoir characteristics natural gas hydrates gas migration Resource potential Resource evaluation methods Hierarchical evaluation system Volumetric method South China Sea Clean energy exploration engineering
下载PDF
Passability test and simulation of sand control string with natural gas hydrates completion in large curvature hole
5
作者 Hao-xian Shi Yan-jiang Yu +12 位作者 Ru-lei Qin Jun-yu Deng Yi-xin Zhong Li-qiang Qi Bin Li Bo Fan Qiu-ping Lu Jian Wang Kui-wei Li Ye-cheng Gan Gen-long Chen Hao-wen Chen Zhi-ming Wu 《China Geology》 CAS CSCD 2023年第1期27-36,共10页
To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells... To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation. 展开更多
关键词 natural gas hydrates(nghs) Completion sand control string Large curvature borehole Passability test Friction coefficient Oil and gas exploration engineering nghs exploration trial engineering
下载PDF
Application of the monitoring and early warning system for internal solitary waves:Take the second natural gas hydrates production test in the South China Sea as an example
6
作者 Dan-yi Su Bin-bin Guo +5 位作者 Qian-yong Liang Chu-jin Liang Fei-long Lin Su-meng Jiang Yi-fei Dong Xue-min Wu 《China Geology》 CAS CSCD 2023年第4期676-684,共9页
Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ... Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ISWs was developed using technologies of double buoys monitoring, intelligent realtime data transmission, and automatic software identification. The system was applied to the second natural gas hydrates(NGHs) production test in the Shenhu Area, South China Sea(SCS) and successfully provided the early warning of ISWs for 173 days(from October 2019 to April 2020). The abrupt changes in the thrust force of the drilling platform under the attack of ISWs were consistent with the early warning information, proving the reliability of this system. A total of 93 ISWs were detected around the drilling platform. Most of them occurred during the spring tides in October–December 2019 and April 2020, while few of them occurred in winter. As suggested by the theoretical model, the full-depth structure of ISWs was a typical current profile of mode-1, and the velocities of wave-induced currents can reach 80 cm/s and30 cm/s, respectively, in the upper ocean and near the seabed. The ISWs may be primarily generated from the interactions between the topography and semidiurnal tides in the Luzon Strait, and then propagate westward to the drilling platform. This study could serve as an important reference for the early warning of ISWs for offshore engineering construction in the future. 展开更多
关键词 Internal solitary wave Early warning Offshore engineering Drilling platform natural gas hydrates production test Shenhu Area South China Sea
下载PDF
Natural gas hydrates in the Qinghai-Tibet Plateau: Characteristics, formation, and evolution 被引量:2
7
作者 You-hai Zhu Shou-ji Pang +2 位作者 Rui Xiao Shuai Zhang Zhen-quan Lu 《China Geology》 2021年第1期17-31,共15页
The Qinghai-Tibet Plateau(also referred to as the Plateau)is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas ... The Qinghai-Tibet Plateau(also referred to as the Plateau)is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas hydrates(NGH).Up to now,one NGH accumulation,two inferred NGH accumulations,and a series of NGH-related anomalous indicators have been discovered in the Plateau,with NGH resources predicted to be up to 8.88×10^(12) m^(3).The NGH in the Qinghai-Tibet Plateau have complex gas components and are dominated by deep thermogenic gas.They occur in the Permian-Jurassic strata and are subject to thin permafrost and sensitive to environment.Furthermore,they are distinctly different from the NGH in the high-latitude permafrost in the arctic regions and are more different from marine NGH.The formation of the NGH in the Plateau obviously couples with the uplift and permafrost evolution of the Plateau in spatial-temporal terms.The permafrost and NGH in the Qilian Mountains and the main body of the Qinghai-Tibet Plateau possibly formed during 2.0–1.28 Ma BP and about 0.8 Ma BP,respectively.Under the context of global warming,the permafrost in the Qinghai-Tibet Plateau is continually degrading,which will lead to the changes in the stability of NGH.Therefore,The NGH of the Qinghai-Tibet Plateau can not be ignored in the study of the global climate change and ecological environment. 展开更多
关键词 natural gas hydrates(ngh) PERMAFROST Global climate change Qinghai-Tibet Plateau
下载PDF
Experimental study on solid particle migration and production behaviors during marine natural gas hydrate dissociation by depressurization 被引量:1
8
作者 Yan-Long Li Fu-Long Ning +5 位作者 Meng Xu Min-Hui Qi Jia-Xin Sun Alireza Nouri De-Li Gao Neng-You Wu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3610-3623,共14页
Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behavi... Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behaviors,while their relationships were rarely reported,severely constrains quantitative evaluation of sand production risks.This paper reports the optical observations of solid particle migration and production from micrometer to mesoscopic scales conditioned to gravel packing during depressurization-induced NGH dissociation for the first time.Theoretical evolutionary modes of sand migration are established based on experimental observations,and its implications on field NGH are comprehensively discussed.Five particle migration regimes of local borehole failure,continuous collapse,wormhole expansion,extensive slow deformation,and pore-wall fluidization are proved to occur during depressurization.The types of particle migration regimes and their transmission modes during depressurization are predominantly determined by initial hydrate saturation.In contrast,the depressurization mainly dominates the transmission rate of the particle migration regimes.Furthermore,both the cumulative mass and the medium grain size of the produced sand decrease linearly with increasing initial methane hydrate(MH)saturation.Discontinuous gas bubble emission,expansion,and explosion during MH dissociation delay sand migration into the wellbore.At the same time,continuous water flow is a requirement for sand production during hydrate dissociation by depressurization.The experiments enlighten us that a constitutive model that can illustrate visible particle migration regimes and their transmission modes is urgently needed to bridge numerical simulation and field applications.Optimizing wellbore layout positions or special reservoir treatment shall be important for mitigating sand production tendency during NGH exploitation. 展开更多
关键词 natural gas hydrate Solid particle migration Sand production Sand control SANDING Hydrate exploitation
下载PDF
Gas Sources of Natural Gas Hydrates in the Shenhu Drilling Area, South China Sea: Geochemical Evidence and Geological Analysis 被引量:13
9
作者 ZHU Youhai HUANG Xia +1 位作者 FU Shaoying SU Pibo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期767-776,共10页
The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated... The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ^13C1) are -56.7%0. and -60.9%0, and its hydrogen isotope (δD) are -199%0 and -180%0, respectively, indicating the methane from the microbial reduction of CO2. Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process. 展开更多
关键词 natural gas hydrate METHANE microbial gas gas source MIGRATION South China Sea
下载PDF
SCHEMES OF GAS PRODUCTION FROM NATURAL GAS HYDRATES 被引量:6
10
作者 李淑霞 陈月明 杜庆军 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期102-107,共6页
Natural gas hydrates are a kind of nonpolluting and high quality energy resources for future, the reserves of which are about twice of the carbon of the current fossil energy (petroleum, natural gas and coal) on the e... Natural gas hydrates are a kind of nonpolluting and high quality energy resources for future, the reserves of which are about twice of the carbon of the current fossil energy (petroleum, natural gas and coal) on the earth. And it will be the most important energy for the 21st century. The energy balance and numerical simulation are applied to study the schemes of the natural gas hydrates production in this paper,and it is considered that both depressurization and thermal stimulation are effective methods for exploiting natural gas hydrates, and that the gas production of the thermal stimulation is higher than that of the depressurization. But thermal stimulation is non-economic because it requires large amounts of energy.Therefore the combination of the two methods is a preferable method for the current development of the natural gas hydrates. The main factors which influence the production of natural gas hydrates are: the temperature of injected water, the injection rate, the initial saturation of the hydrates and the initial temperature of the reservoir which is the most important factor. 展开更多
关键词 natural gas hydrate energy balance NUMERICAL simulation scheme of production
下载PDF
China Has Successfully Conducted its First Pilot Production of Natural Gas Hydrates 被引量:4
11
作者 HAO Ziguo FEI Hongcai +1 位作者 HAO Qingqing LIU Lian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期1133-1134,共2页
Natural gas methane and hydrates are a chemical compound of water molecules formed under low temperature and high pressure. The decomposition of 1 m^3 of natural gas hydrates can release about 0.8 m^3 of water and 164... Natural gas methane and hydrates are a chemical compound of water molecules formed under low temperature and high pressure. The decomposition of 1 m^3 of natural gas hydrates can release about 0.8 m^3 of water and 164 m3 of natural gas. Thus, natural gas hydrates are characterized by their high-energy density and huge resource potential. It is estimated that the world's total natural gas hydrates resource amount is equivalent to twice the total carbon amount of the global proven conventional fuels and can meet the human energy requirement in the future for 1000 years. They are thus the first choice to replace conventional energy of petroleum and coal. 展开更多
关键词 of AS on China Has Successfully Conducted its First Pilot Production of natural gas hydrates in
下载PDF
Migration and accumulation characteristics of natural gas hydrates in the uplifts and their slope zones in the Qiongdongnan Basin,China 被引量:4
12
作者 Yu-lin He Jin-qiang Liang +5 位作者 Zeng-gui Kuang Wei Deng Jin-feng Ren Hong-fei Lai Miao-miao Meng Wei Zhang 《China Geology》 2022年第2期234-250,共17页
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri... Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration. 展开更多
关键词 gas chimney OVERPRESSURE Migration characteristics of gas hydrates Accumulation characteristics of gas hydrates Oil and gas exploration engineering nghs exploration trial engineering Uplifts and slope zones Qiongdongnan Basin China
下载PDF
Reduction of global natural gas hydrate(NGH)resource estimation and implications for the NGH development in the South China Sea 被引量:2
13
作者 Xiong-Qi Pang Cheng-Zao Jia +10 位作者 Zhang-Xing Chen He-Sheng Shi Zhuo-Heng Chen Tao Hu Tong Wang Zhi Xu Xiao-Han Liu Xing-Wen Zhang En-Ze Wang Zhuo-Ya Wu Bo Pang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期3-12,共10页
There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35... There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35 groups of estimations were conducted on NGH resource potential since 2000,while these estimates kept almost the same with time,varying between 60 and 90 billion tons of oil equivalent(toe).What are the key factors controlling the variation trend?What are the implications of these variations for the NGH development in the world and the SCS?By analyzing the investigation characteristics of NGH resources in the world,this study divided the evaluation process into six stages and confirmed four essential factors for controlling the variations of estimates.Results indicated that the reduction trend reflects an improved understanding of the NGH formation mechanism and advancement in the resource evaluation methods,and promoted more objective evaluation results.Furthermore,the analysis process and improved evaluation method was applied to evaluate the NGH resources in the SCS,showing the similar decreasing trend of NGH resources with time.By utilizing the decreasing trend model,the predicted recoverable resources in the world and the SCS are(205-500)×10^(12)m^(3)and(0.8-6.5)×10^(12)m^(3),respectively,accounting for 20%of the total conventional oil and gas resources.Recoverable NGH resource in the SCS is only about 4%-6%of the previous estimates of 60-90 billion toe.If extracted completely,it only can support the sustainable development of China for 7 years at the current annual consumption level of oil and gas.NGH cannot be the main energy resource in future due to its low resource potential and lack of advantages in recovery. 展开更多
关键词 natural gas hydrate Resource evaluation South China Sea Global ngh resource Reduction trend in ngh resource
下载PDF
Molecular simulation studies on natural gas hydrates nucleation and growth:A review 被引量:2
14
作者 Zheng-cai Zhang Neng-you Wu +7 位作者 Chang-ling Liu Xi-luo Hao Yong-chao Zhang Kai Gao Bo Peng Chao Zheng Wei Tang Guang-jun Guo 《China Geology》 2022年第2期330-344,共15页
How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related tech... How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related technology.Due to its limitations on both spatial and temporal dimensions,experiment cannot fully explain this issue on a micro-scale.With the development of computer technology,molecular simulation has been widely used in the study of hydrate formation because it can observe the nucleation and growth process of hydrates at the molecular level.This review will assess the recent progresses in molecular dynamics simulation of hydrate nucleation and growth,as well as the enlightening significance of these developments in hydrate applications.At the same time,combined with the problems encountered in recent hydrate trial mining and applications,some potential directions for molecular simulation in the research of hydrate nucleation and growth are proposed,and the future of molecular simulation research on hydrate nucleation and growth is prospected. 展开更多
关键词 natural gas hydrates Methane hydrate Molecular simulations Hydrate nucleation Hydrate growth Hydrate formation Nucleation theory nghs exploration trial engineering Oil and gas exploration engineering
下载PDF
Calorimetric Determination of Enthalpy of Formation of Natural Gas Hydrates 被引量:2
15
作者 高军 Kenneth N.Marsh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第3期276-279,共4页
This paper reports the measurements of enthalpies of natural gas hydrates in typical natural gas mixture containing methane, ethane, propane and iso-butane at pressure in the vicinity of 2000 kPa (300 psi) and 6900 kP... This paper reports the measurements of enthalpies of natural gas hydrates in typical natural gas mixture containing methane, ethane, propane and iso-butane at pressure in the vicinity of 2000 kPa (300 psi) and 6900 kPa(1000psi). The measurements were made in a multi-cell differential scanning calorimeter using modified high pressure cells. The enthalpy of water and the enthalpy of dissociation of the gas hydrate were determined from the calorimeter response during slow temperature scanning at constant pressure. The amount of gas released from the dissociation of hydrate was determined from the pumped volume of the high pressure pump. The occupation ratio (mole ratio) of the water to gas and the enthalpy of hydrate formation are subject to uncertainty of 1.5%.The results show that the enthalpy of hydrate formation and the occupation ratio are essentially independent of pressure. 展开更多
关键词 enthalpy of formation calorimetric determination natural gas hydrate
下载PDF
Design and feasibility analysis of a new completion monitoring technical scheme for natural gas hydrate production tests
16
作者 Qiu-ping Lu Yan-jiang Yu +8 位作者 Xie Wen-wei Jin-qiang Liang Jing-an Lu Ben-chong Xu Hao-xian Shi Hao-yu Yu Ru-lei Qin Xing-chen Li Bin Li 《China Geology》 CAS CSCD 2023年第3期466-475,共10页
As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change ... As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change in the mechanical properties with the dissociation of NGHs during NGHs production tests by depressurization.Based on the development of Japan’s two offshore NGHs production tests in vertical wells,this study innovatively proposed a new subsea communication technology-accurate directional connection using a wet-mate connector.This helps to overcome the technical barrier to the communication between the upper and lower completion of offshore wells.Using this new communication technology,this study explored and designed a mechanical monitoring scheme for lower completion(sand screens).This scheme can be used to monitor the tensile stress and radial compressive stress of sand screens caused by NGHs reservoirs in real time,thus promoting the technical development for the rapid assessment and real-time feedback of the in-situ mechanical response of NGHs reservoirs during offshore NGHs production tests by depressurization. 展开更多
关键词 natural gas hydrates Depressurization test Wet-mate Directional connection Lower completion monitoring In-situ mechanical response of reservoirs Oil-gas exploration engineering The South China Sea
下载PDF
Distributed optical fiber acoustic sensor for in situ monitoring of marine natural gas hydrates production for the first time in the Shenhu Area,China 被引量:2
17
作者 Xiang-ge He Xue-min Wu +6 位作者 Lei Wang Qian-yong Liang Li-juan Gu Fei Liu Hai-long Lu Yi Zhang Min Zhang 《China Geology》 2022年第2期322-329,共8页
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p... The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect. 展开更多
关键词 gas hydrate production monitoring Optical fiber sensor Distributed acoustic sensor In situ monitoring Fluid type nghs exploration trial engineering Oil and gas exploration engineering Shenhu Area South China Sea
下载PDF
Stability analysis of seabed strata and casing structure during the natural gas hydrates exploitation by depressurization in horizontal wells in South China Sea 被引量:1
18
作者 Peng-fei Xie Lin Yang +7 位作者 Qian-yong Liang Xu-hui Zhang Liang-hua Zhang Bin Zhang Xiao-bing Lu Hui-ce He Xue-min Wu Yi-fei Dong 《China Geology》 2022年第2期300-309,共10页
Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of... Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of the study area using the FLAC^(3D) software based on the key parameters of the NGHs production test area in the South China Sea,including the depressurization method,and mechanical parameters of strata,NGHs occurrence characteristics,and the technological characteristics of horizontal wells.Moreover,this study explored the law of influences of the NGHs dissociation range on the stability of the overburden strata and the casing structure of a horizontal well.The results are as follows.With the dissociation of NGHs,the overburden strata of the NGHs dissociation zone subsided and formed funnelshaped zones and then gradually stabilized.However,the upper interface of the NGHs dissociation zone showed significant redistribution and discontinuity of stress.Specifically,distinct stress concentration and corresponding large deformation occurred in the build-up section of the horizontal well,which was thus prone to suffering shear failure.Moreover,apparent end effects occurred at the end of the horizontal well section and might cause the deformation and failure of the casing structure.Therefore,it is necessary to take measures in the build-up section and at the end of the horizontal section of the horizontal well to prevent damage and ensure the wellbore safety in the long-term NGHs exploitation. 展开更多
关键词 natural gas hydrates(nghs) Exploitation by depressurization Horizontal well Stratum subsidence Shear failure nghs exploration trial engineering Oil and gas exploration engineering Shenhu Area South China Sea
下载PDF
AVO Character Research of Natural Gas Hydrates in the East China Sea 被引量:1
19
作者 LIU Huaishan HUANG Guangnan HE Yi TONG Siyou CUI Shuguo ZHANG Jin 《Journal of Ocean University of China》 SCIE CAS 2009年第3期270-276,共7页
Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO met... Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO method is one of the methods which can be used to identify and forecast lithologic characteristics and fluid properties by using the relationship between Amplitude and Offset. AVO anomaly is one of the significant signs to check out whether or not there is free gas below the BSR, so it can be used to detect natural gas hydrates from the seismic profile. Considering the geological and geophysical characteristics of the Okinawa Trough and making use of the techniques mentioned above, we can conclude that the conditions there are favorable for the formation and concentration of natural gas hydrates. By analyzing the data collected from the study area, one can discover many different anomalous phenomena on the seismic profile which are related to the existence of natural gas hydrates. Preliminary estimation of the natural gas hydrates in the Okinawa Trough shows that the trough is rich in natural gas hydrates and may become a potential important resources exploration area. 展开更多
关键词 natural gas hydrates free gas blank zone Okinawa Trough
下载PDF
Reserves of Natural Gas Hydrates Equivalent to 100–150 Billion m^3 Natural Gas Has Been Discovered in the Pearl Mouth Basin of the South China Sea 被引量:2
20
作者 HAO Ziguo FEI Hongcai +1 位作者 HAO Qingqing Susan TURNER 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第1期361-361,共1页
Scientists have suggested that combustible ice in global marginal seas,deep trough areas and ocean basins covers an area of 400million km2,and its total reserve is twice the amount of the global proven oil,coal and ga... Scientists have suggested that combustible ice in global marginal seas,deep trough areas and ocean basins covers an area of 400million km2,and its total reserve is twice the amount of the global proven oil,coal and gas reserves,equivalent to 50 times the amount of conventional natural gas reserves. 展开更多
关键词 Billion m~3 natural gas Has Been Discovered in the Pearl Mouth Basin of the South China Sea Reserves of natural gas hydrates Equivalent to 100
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部