期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Natural gas characteristics and gas-source comparisons of the Lower Triassic Feixianguan Formation,Eastern Sichuan Basin,China
1
作者 Zi-Yun Zheng Yin-Hui Zuo +5 位作者 Hua-Guo Wen De-Ming Li Yang Luo Jia-Zhen Zhang Mei-Hua Yang Jian-Cheng Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1458-1470,共13页
There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Fe... There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Feixianguan Formation and thus hampers natural gas exploration in the region,so further study is urgently required.Using experimental tests of natural gas composition,stable isotopes,and noble gas isotopes with gas chromatography(GC)and mass spectrometry(MS)studies of source rock and reservoir asphalt saturated hydrocarbons,the natural gas geochemical characteristics,the genetic identification and a gas-source comparison of the Feixianguan Formation were studied.Then,con-strained by the thermal history,the histories of gas generation and expulsion were restored by basin simulation technology.Finally,a gas accumulation model was established for the Feixianguan Formation.The results showed that(1)the H_(2)S-rich and H2S-poor gas reservoirs of the Feixianguan Formation are distributed on the east and west sides of the Kaijiang-Liangping trough in the Eastern Sichuan Basin,respectively.The carbon and hydrogen isotope compositions of the natural gas in the gas reservoirs are generally heavy and have typical characteristics of high-maturity dry gas reservoirs.(2)The natural gas of the Feixianguan Formation is organic thermogenic gas,which is mainly oil-type gas generated by the secondary cracking of crude oil.The gas-generating parent material is mainly type II kerogen.(3)The natural gas of the Feixianguan Formation in the Eastern Sichuan Basin was mainly generated by argil-laceous source rocks of the Upper Permian Longtan Formation.(4)Natural gas accumulation occurred as follows:the paleo-structure heights were filled with crude oil in the Early Jurassic,and paleo-oil res-ervoirs were formed in the Feixianguan Formation;during the Middle-Late Jurassic,the paleo-oil res-ervoirs were cracked when the reservoir temperatures rose above 160 C,and paleo-gas reservoirs were formed.Since the end of the Late Jurassic,the paleo-gas reservoirs have been adjusted and reformed to form the present-day natural gas reservoirs.These results provide a basis for studying natural gas accumulation dynamics of the Feixianguan Formation in the Eastern Sichuan Basin. 展开更多
关键词 Eastern Sichuan Basin Feixianguan Formation natural gas origin gas-source comparison Longtan Formation
下载PDF
Tracing of natural gas migration by light hydrocarbons:A case study of the Dongsheng gas field in the Ordos Basin,NW China
2
作者 WU Xiaoqi NI Chunhua +3 位作者 MA Liangbang WANG Fubin JIA Huichong WANG Ping 《Petroleum Exploration and Development》 SCIE 2024年第2期307-319,共13页
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical char... Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents. 展开更多
关键词 Ordos Basin Dongsheng gas field Permian Lower Shihezi Formation light hydrocarbon compounds maturity natural gas origin migration phase state diffusion loss
下载PDF
Source Rocks for the Giant Puguang Gas Field,Sichuan Basin:Implication for Petroleum Exploration in Marine Sequences in South China 被引量:11
3
作者 ZOU Huayao HAO Fang +4 位作者 ZHU Yangming GUO Tonglou CAI Xunyu LI Pingping ZHANG Xuefeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期477-486,共10页
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low refl... Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China. 展开更多
关键词 reservoir bitumen oil-cracking origin of origin and natural gas Puguang gas field
下载PDF
Discovery and Significance of High CH_4 Primary Fluid Inclusions in Reservoir Volcanic Rocks of the Songliao Basin,NE China 被引量:14
4
作者 WANG Pujun HOU Qijun +4 位作者 WANG Keyong CHEN Shumin CHENG Rihui LIU Wanzhu LI Quanlin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第1期113-120,共8页
Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysi... Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysis, we found that: (1) up to 82 mole% methane exists in the primary inclusions hosted in the reservoir volcanic rocks; (2) high CH4 inclusions recognized in the volcanic rocks correspond to CH4-bcaring CO2 reservoirs that are rich in helium and with a high ^3He/^4He ratio and which show reversed order of 813C in alkane; (3) in gas reservoirs of such abiotic methane (〉80%) and a mix of CH4 and CO2, the enclosed content of CH4 in the volcanic inclusions is usually below 42 mole%, and the reversed order of δ^13C in alkane is sometimes irregular in the corresponding gas pools; (4) a glassy inclusion with a homogeneous temperature over 900℃ also contains a small portion of CH4 although predominantly CO2. This affinity between gas pool and content of inclusion in the same volcanic reservoirs demonstrates that magma-originated gases, both CH4 and CO2, have contributed significantly to the corresponding gas pools and that the assumed hydrocarbon budget of the bulk earth might be much larger than conventionally supposed. 展开更多
关键词 Songliao Basin reservoir volcanic rocks fluid inclusions methane (CH4) carbon dioxide (CO2) abiogenic origin natural gas
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部