In this paper,a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method,statistical analysis,mathematical-probabilistic analysis,and hydraulic simulatio...In this paper,a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method,statistical analysis,mathematical-probabilistic analysis,and hydraulic simulation.The method proposed has two stages.In the first stage,typical scenarios are determined.In the second stage,hydraulic simulation is conducted to calculate the flow rate in each typical scenario.The result of the gas pipeline system calculated is the average gas supply reliability in each typical scenario.To verify the feasibility,the method proposed is applied for a real natural gas pipelines network system.The comparison of the results calculated and the actual gas supply reliability based on the filed data in the evaluation period suggests the assessment results of the method proposed agree well with the filed data.Besides,the effect of different components on gas supply reliability is investigated,and the most critical component is identified.For example,the 48th unit is the most critical component for the SH terminal station,while the 119th typical scenario results in the most severe consequence which causes the loss of 175.61×10^4 m^3 gas when the 119th scenario happens.This paper provides a set of scientific and reasonable gas supply reliability indexes which can evaluate the gas supply reliability from two dimensions of quantity and time.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage faciliti...An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.展开更多
Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system....Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system. This paper discusses the use of simulation for performance analysis of transmission PNS. A simulation model was developed for determining flow and pressure variables for different configuration of PNS. The mathematical formulation for the simulation model was derived based on the principles of energy conservation, mass balance, and compressor characteristics. For the determination of the pressure and flow variables, solution procedure was developed based on iterative Newton Raphson scheme and implemented using visual C++6. Evaluations of the simulation model with the existing pipeline network system showed that the model enabled to determine the operational variables with less than ten iterations. The performances of the compressor working in the pipeline network system xvhich includes energy consumption, compression ratio and discharge pressure were evaluated to meet pressure requirements ranging from 4000-5000 kPa at various speed. Results of the analyses from the simulation indicated that the model could be used for performance analysis to assist decisions regarding the design and optimal operations of transmission PNS.展开更多
Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is...Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is essential.In this work,a risk analysis and maintenance decision-making model for natural gas pipelines with external corrosion is proposed based on a Bayesian network.A fault tree model is first employed to identify the causes of external corrosion.The Bayesian network for risk analysis is determined accordingly.The maintenance strategies are then inserted into the Bayesian network to show a reduction of the risk.The costs of maintenance strategies and the reduced risk after maintenance are combined in an optimization function to build a decision-making model.Because of the limitations of historical data,some of the parameters in the Bayesian network are obtained from a probabilistic estimation model,which combines expert experience and fuzzy set theory.Finally,a case study is carried out to verify the feasibility of the maintenance decision model.This indicates that the method proposed in this work can be used to provide effective maintenance schemes for different pipeline external corrosion scenarios and to reduce the possible losses caused by external corrosion.展开更多
The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures t...The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.展开更多
There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first establ...There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first established the finite element model of the strain of buried pipeline crossing a fault which effected by the size and shape of the trench.And it obtained new soil spring stiffness which considered different buried depth,bottom width of trench,trench slope and elastic modulus of soil.The mechanical analysis model of pipeline is established,and the limit state equation of pipeline is fitted.The reliability and sensitivity of the natural gas pipeline under fault action are analysed by a Monte Carlo method,and the error and accuracy are verified.When the pipeline is under tension,the sensitivity from large to small is buried depth,sand friction angle,pipe diameter,pipeline displacement,trench bottom width,trench depth,clay cohesion,trench slope and clay friction angle;when the pipeline is under pressure,the trench depth and clay cohesion have great influence.The findings of this study provide a reference for pipeline design and safety evaluation under fault action.展开更多
China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determin...China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determined by competition, oil and gas pipeline facilities will be opened fairly, and private enterprises will play important roles in natural gas exploration, development, storage, transportation, and trade. It can been foreseen that China natural gas industry is very likely to take a turn in next 10 years, and a modern natural gas market with consumption about 500 billion cubic meters will come into being characterized by complete supervision system, diversified market, steady supply, fairly opened pipelines, transparent trading mechanism, and competitive prices.展开更多
With the increase in energy demand, the demand for oil and gas transmission pipes, particularly high-grade longitudinal submerged arc welded pipes (LSAWs), have been growing in recent years. The construction of the ...With the increase in energy demand, the demand for oil and gas transmission pipes, particularly high-grade longitudinal submerged arc welded pipes (LSAWs), have been growing in recent years. The construction of the 2nd West -East natural gas transmission pipeline project shows that the oil and gas pipeline construction has entered a new phase of development with X80 pipes being applied in large scales for the first time in China. This paper briefly introduces the 2nd West-East natural gas transmission pipeline project and its main technical requirements with the focus on the features of API standard 5L X80 grade Ф 1219 mm series of U-ing-O-ing-Expanding ( UOE ) LSAW pipes, which Baosteel developed with the integrated technology for the 2nd West-East natural gas transmission pipeline project. The analysis shows the extra-low carbon content, the high contents of manganese and niobium, the fine microstructure, the high strength,the toughness and the good weldability of X80 pipes meet the requirements of "the technical specification of LSAW linepipes for the 2nd West-East natural gas transmission pipeline project in China". By the end of June 2010, Baosteel had totally produced 322000 t of Ф 1219 mm X80 UOE steel pipes, which have been successfully used in the 2nd West-East natural gas transmission pipeline project, thus filling the gap of the production of large diameter X80 UOE LSAW pipes in China.展开更多
Pencil hardness testing,electrochemical impedance spectroscopy,scanning electron microscopy,and scanning Kelvin probe microscopy were used to study the local corrosion characteristics of a graphene-oxide-modified inne...Pencil hardness testing,electrochemical impedance spectroscopy,scanning electron microscopy,and scanning Kelvin probe microscopy were used to study the local corrosion characteristics of a graphene-oxide-modified inner coating.The effect of chloride concentration on the corrosion of the damaged inner coating was studied.The effects of chloride ions on damaged internal coatings and graphene-oxide-modified internal coatings were investigated.It was proposed to add graphene oxide into the epoxy coating to effectively inhibit the metal corrosion at the breakage.Because of the existence of graphene oxide(GO),the modified coating had a better physical property and had the effective infiltration of H2O and Cl^- into the coating.The results showed that graphene oxide coatings can give X80 steel better corrosion resistance in sodium chloride solution.展开更多
文摘In this paper,a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method,statistical analysis,mathematical-probabilistic analysis,and hydraulic simulation.The method proposed has two stages.In the first stage,typical scenarios are determined.In the second stage,hydraulic simulation is conducted to calculate the flow rate in each typical scenario.The result of the gas pipeline system calculated is the average gas supply reliability in each typical scenario.To verify the feasibility,the method proposed is applied for a real natural gas pipelines network system.The comparison of the results calculated and the actual gas supply reliability based on the filed data in the evaluation period suggests the assessment results of the method proposed agree well with the filed data.Besides,the effect of different components on gas supply reliability is investigated,and the most critical component is identified.For example,the 48th unit is the most critical component for the SH terminal station,while the 119th typical scenario results in the most severe consequence which causes the loss of 175.61×10^4 m^3 gas when the 119th scenario happens.This paper provides a set of scientific and reasonable gas supply reliability indexes which can evaluate the gas supply reliability from two dimensions of quantity and time.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
基金supported by National Natural Science Foundation of China[grant number 51904316]provided by China University of Petroleum,Beijing[grant number2462021YJRC013,2462020YXZZ045]
文摘An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.
文摘Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system. This paper discusses the use of simulation for performance analysis of transmission PNS. A simulation model was developed for determining flow and pressure variables for different configuration of PNS. The mathematical formulation for the simulation model was derived based on the principles of energy conservation, mass balance, and compressor characteristics. For the determination of the pressure and flow variables, solution procedure was developed based on iterative Newton Raphson scheme and implemented using visual C++6. Evaluations of the simulation model with the existing pipeline network system showed that the model enabled to determine the operational variables with less than ten iterations. The performances of the compressor working in the pipeline network system xvhich includes energy consumption, compression ratio and discharge pressure were evaluated to meet pressure requirements ranging from 4000-5000 kPa at various speed. Results of the analyses from the simulation indicated that the model could be used for performance analysis to assist decisions regarding the design and optimal operations of transmission PNS.
基金supported by the National Key R&D Program of China(Grant No.2018YFC0809300)the National Natural Science Foundation of China(Grant No.51806247)+2 种基金the Key Technology Project of Petro China Co Ltd.(Grant No.ZLZX2020-05)the Foundation of Sinopec(Grant No.320034)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020YXZZ052)
文摘Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is essential.In this work,a risk analysis and maintenance decision-making model for natural gas pipelines with external corrosion is proposed based on a Bayesian network.A fault tree model is first employed to identify the causes of external corrosion.The Bayesian network for risk analysis is determined accordingly.The maintenance strategies are then inserted into the Bayesian network to show a reduction of the risk.The costs of maintenance strategies and the reduced risk after maintenance are combined in an optimization function to build a decision-making model.Because of the limitations of historical data,some of the parameters in the Bayesian network are obtained from a probabilistic estimation model,which combines expert experience and fuzzy set theory.Finally,a case study is carried out to verify the feasibility of the maintenance decision model.This indicates that the method proposed in this work can be used to provide effective maintenance schemes for different pipeline external corrosion scenarios and to reduce the possible losses caused by external corrosion.
文摘The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.
基金financial support by China Petroleum Science&Technology Innovation Fund(2017D-50070606):Reliability research of large diameter and high steel natural gas pipeline under fault action。
文摘There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first established the finite element model of the strain of buried pipeline crossing a fault which effected by the size and shape of the trench.And it obtained new soil spring stiffness which considered different buried depth,bottom width of trench,trench slope and elastic modulus of soil.The mechanical analysis model of pipeline is established,and the limit state equation of pipeline is fitted.The reliability and sensitivity of the natural gas pipeline under fault action are analysed by a Monte Carlo method,and the error and accuracy are verified.When the pipeline is under tension,the sensitivity from large to small is buried depth,sand friction angle,pipe diameter,pipeline displacement,trench bottom width,trench depth,clay cohesion,trench slope and clay friction angle;when the pipeline is under pressure,the trench depth and clay cohesion have great influence.The findings of this study provide a reference for pipeline design and safety evaluation under fault action.
文摘China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determined by competition, oil and gas pipeline facilities will be opened fairly, and private enterprises will play important roles in natural gas exploration, development, storage, transportation, and trade. It can been foreseen that China natural gas industry is very likely to take a turn in next 10 years, and a modern natural gas market with consumption about 500 billion cubic meters will come into being characterized by complete supervision system, diversified market, steady supply, fairly opened pipelines, transparent trading mechanism, and competitive prices.
文摘With the increase in energy demand, the demand for oil and gas transmission pipes, particularly high-grade longitudinal submerged arc welded pipes (LSAWs), have been growing in recent years. The construction of the 2nd West -East natural gas transmission pipeline project shows that the oil and gas pipeline construction has entered a new phase of development with X80 pipes being applied in large scales for the first time in China. This paper briefly introduces the 2nd West-East natural gas transmission pipeline project and its main technical requirements with the focus on the features of API standard 5L X80 grade Ф 1219 mm series of U-ing-O-ing-Expanding ( UOE ) LSAW pipes, which Baosteel developed with the integrated technology for the 2nd West-East natural gas transmission pipeline project. The analysis shows the extra-low carbon content, the high contents of manganese and niobium, the fine microstructure, the high strength,the toughness and the good weldability of X80 pipes meet the requirements of "the technical specification of LSAW linepipes for the 2nd West-East natural gas transmission pipeline project in China". By the end of June 2010, Baosteel had totally produced 322000 t of Ф 1219 mm X80 UOE steel pipes, which have been successfully used in the 2nd West-East natural gas transmission pipeline project, thus filling the gap of the production of large diameter X80 UOE LSAW pipes in China.
基金Project(51674212)supported by the National Natural Science Foundation of China。
文摘Pencil hardness testing,electrochemical impedance spectroscopy,scanning electron microscopy,and scanning Kelvin probe microscopy were used to study the local corrosion characteristics of a graphene-oxide-modified inner coating.The effect of chloride concentration on the corrosion of the damaged inner coating was studied.The effects of chloride ions on damaged internal coatings and graphene-oxide-modified internal coatings were investigated.It was proposed to add graphene oxide into the epoxy coating to effectively inhibit the metal corrosion at the breakage.Because of the existence of graphene oxide(GO),the modified coating had a better physical property and had the effective infiltration of H2O and Cl^- into the coating.The results showed that graphene oxide coatings can give X80 steel better corrosion resistance in sodium chloride solution.