Through a great many qualitative and quantitative analyses, this paperstudies the development of gas power in China in the coming ten years based oninvestigations of more than one year. Some good advices are suggested...Through a great many qualitative and quantitative analyses, this paperstudies the development of gas power in China in the coming ten years based oninvestigations of more than one year. Some good advices are suggested toinvestors and decision-makers, such as the advantages and disadvantages ofpower generation using natural gas, development plans of local power grids, andproblems necessary to be noted and solved.[展开更多
Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produc...Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.展开更多
Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!fil...Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!filling commercial development after U.S. attd Canada. Natural gas import growth and growth rate declined obviously, and the imported pipeline gas and LNG totaled 61.2 billion cubic meters in 2015. Apparent natural gas consumption was 186.5 billion cubic meters in 2015, rising by 4.4% as compared with the same period last year, but it hit a historic low. There is higher dozonward pressure on domestic macro economy in 2016. However, natural gas demand will see more rapid growth, propelled by such favorable factors as gas price regulation and environmental protection policies. It is prospected that natural gas market will take a turn for the better than in 2015, and natural gas supply will still be rich in general in 2016.展开更多
In 2018,China's natural gas market reached a new level of development,with apparent consumption of 280.3 billion m3,up by 18.1%over the same period in the previous year.Domestic production grew steadily,reaching 1...In 2018,China's natural gas market reached a new level of development,with apparent consumption of 280.3 billion m3,up by 18.1%over the same period in the previous year.Domestic production grew steadily,reaching 157 billion m3,up by 7.2%over the same period in the previous year.Natural gas imports grew rapidly,with imports of pipeline gas and LNG totalling 124.2 billion m3.In terms of trade types,imports of LNG continue to exceed those of pipeline gas.In 2019,there has been downward pressure on the macro economy,and the development of the main gas sector has slowed down.Driven by environmental protection policies,the natural gas market continues to maintain rapid growth.However,it is difficult for the levels of increment and growth to reach those of the previous two years,and the growth rate of market demand is predicted to reach 10.7%.展开更多
Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretic...Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.展开更多
In modern times,worldwide requirements to curb greenhouse gas emissions,and increment in energy demand due to the progress of humanity,have become a serious concern.In such scenarios,the effective and efficient utiliz...In modern times,worldwide requirements to curb greenhouse gas emissions,and increment in energy demand due to the progress of humanity,have become a serious concern.In such scenarios,the effective and efficient utilization of the liquified natural gas(LNG)regasification cold energy(RCE),in the economically and environmentally viable methods,could present a great opportunity in tackling the core issues related to global warming across the world.In this paper,the technologies that are widely used to harness the LNG RCE for electrical power have been reviewed.The systems incorporating,the Rankine cycles,Stirling engines,Kalina cycles,Brayton cycles,Allam cycles,and fuel cells have been considered.Additionally,the economic and environmental studies apart from the thermal studies have also been reviewed.Moreover,the discussion regarding the systems with respect to the regassification pressure of the LNG has also been provided.The aim of this paper is to provide guidelines for the prospective researchers and policy makers in their decision making.展开更多
Liquefied natural gas (LNG), an increasingly widely applied clean fuel, releases a large number of cold energy in its regasification process. In the present paper, the existing power generation cycles utilizing LNG ...Liquefied natural gas (LNG), an increasingly widely applied clean fuel, releases a large number of cold energy in its regasification process. In the present paper, the existing power generation cycles utilizing LNG cold energy are introduced and summarized. The direction of cycle improvement can be divided into the key factors affecting basic power generation cycles and the structural enhancement of cycles utilizing LNG cold energy. The former includes the effects of LNG-side parameters, working fluids, and inlet and outlet thermodynamic parameters of equipment, while the latter is based on Rankine cycle, Brayton cycle, Kalina cycle and their compound cycles. In the present paper, the diversities of cryogenic power generation cycles utilizing LNG cold energy are discussed and analyzed. It is pointed out that further researches should focus on the selection and component matching of organic mixed working fluids and the combination of process simulation and experi- mental investigation, etc.展开更多
The United States (U.S.) Gulf Coast is a prominent global energy hub with a set of highly integrated critical energy infrastructure that rivals, if not surpasses, any comparable set of infrastructure anywhere in the w...The United States (U.S.) Gulf Coast is a prominent global energy hub with a set of highly integrated critical energy infrastructure that rivals, if not surpasses, any comparable set of infrastructure anywhere in the world. Past extreme weather events in the region have led to critical energy infrastructure disruptions with national and global implications. Future sea-level rise (SLR), coupled with other natural hazards, will lead to a significant increase in energy infrastructure damage exposure. This research assesses coastal energy infrastructure that is at risk from various fixed SLR outcomes and scenarios. The results indicate that natural gas processing plants that treat and process natural gas before moving it into the interstate natural gas transmission system may be particularly vulnerable to inundation than other forms of critical energy infrastructure. Under certain SLR assumptions, as much as six Bcfd (eight percent of all U.S. natural gas processing capacity) could be inundated. More extreme SLR exposure assumptions result in greater levels of energy infrastructure capacity exposure including as much as 39 percent of all U.S. refining capacity based on current operating levels. This research and its results show that while fossil fuel industries are often referenced as part of the climate change problem, these industries will likely be more than proportionally exposed to the negative impacts of various climate change outcomes relative to other industrial sectors of the U.S. economy. This has important implications for the U.S. and global energy supplies and costs, as well as for the U.S. regional economies reliant on coastal energy infrastructure and its supporting industries.展开更多
文摘Through a great many qualitative and quantitative analyses, this paperstudies the development of gas power in China in the coming ten years based oninvestigations of more than one year. Some good advices are suggested toinvestors and decision-makers, such as the advantages and disadvantages ofpower generation using natural gas, development plans of local power grids, andproblems necessary to be noted and solved.[
基金Supported by Tianjin Institute of Urban Construction(03046)
文摘Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.
文摘Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!filling commercial development after U.S. attd Canada. Natural gas import growth and growth rate declined obviously, and the imported pipeline gas and LNG totaled 61.2 billion cubic meters in 2015. Apparent natural gas consumption was 186.5 billion cubic meters in 2015, rising by 4.4% as compared with the same period last year, but it hit a historic low. There is higher dozonward pressure on domestic macro economy in 2016. However, natural gas demand will see more rapid growth, propelled by such favorable factors as gas price regulation and environmental protection policies. It is prospected that natural gas market will take a turn for the better than in 2015, and natural gas supply will still be rich in general in 2016.
文摘In 2018,China's natural gas market reached a new level of development,with apparent consumption of 280.3 billion m3,up by 18.1%over the same period in the previous year.Domestic production grew steadily,reaching 157 billion m3,up by 7.2%over the same period in the previous year.Natural gas imports grew rapidly,with imports of pipeline gas and LNG totalling 124.2 billion m3.In terms of trade types,imports of LNG continue to exceed those of pipeline gas.In 2019,there has been downward pressure on the macro economy,and the development of the main gas sector has slowed down.Driven by environmental protection policies,the natural gas market continues to maintain rapid growth.However,it is difficult for the levels of increment and growth to reach those of the previous two years,and the growth rate of market demand is predicted to reach 10.7%.
文摘Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.
基金the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(Grant Nos.2020R1A5A8018822 and 2021R1C1C2009287)the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry and Energy(MOTIE)of the Republic of Korea(No.20223030040120).
文摘In modern times,worldwide requirements to curb greenhouse gas emissions,and increment in energy demand due to the progress of humanity,have become a serious concern.In such scenarios,the effective and efficient utilization of the liquified natural gas(LNG)regasification cold energy(RCE),in the economically and environmentally viable methods,could present a great opportunity in tackling the core issues related to global warming across the world.In this paper,the technologies that are widely used to harness the LNG RCE for electrical power have been reviewed.The systems incorporating,the Rankine cycles,Stirling engines,Kalina cycles,Brayton cycles,Allam cycles,and fuel cells have been considered.Additionally,the economic and environmental studies apart from the thermal studies have also been reviewed.Moreover,the discussion regarding the systems with respect to the regassification pressure of the LNG has also been provided.The aim of this paper is to provide guidelines for the prospective researchers and policy makers in their decision making.
文摘Liquefied natural gas (LNG), an increasingly widely applied clean fuel, releases a large number of cold energy in its regasification process. In the present paper, the existing power generation cycles utilizing LNG cold energy are introduced and summarized. The direction of cycle improvement can be divided into the key factors affecting basic power generation cycles and the structural enhancement of cycles utilizing LNG cold energy. The former includes the effects of LNG-side parameters, working fluids, and inlet and outlet thermodynamic parameters of equipment, while the latter is based on Rankine cycle, Brayton cycle, Kalina cycle and their compound cycles. In the present paper, the diversities of cryogenic power generation cycles utilizing LNG cold energy are discussed and analyzed. It is pointed out that further researches should focus on the selection and component matching of organic mixed working fluids and the combination of process simulation and experi- mental investigation, etc.
文摘The United States (U.S.) Gulf Coast is a prominent global energy hub with a set of highly integrated critical energy infrastructure that rivals, if not surpasses, any comparable set of infrastructure anywhere in the world. Past extreme weather events in the region have led to critical energy infrastructure disruptions with national and global implications. Future sea-level rise (SLR), coupled with other natural hazards, will lead to a significant increase in energy infrastructure damage exposure. This research assesses coastal energy infrastructure that is at risk from various fixed SLR outcomes and scenarios. The results indicate that natural gas processing plants that treat and process natural gas before moving it into the interstate natural gas transmission system may be particularly vulnerable to inundation than other forms of critical energy infrastructure. Under certain SLR assumptions, as much as six Bcfd (eight percent of all U.S. natural gas processing capacity) could be inundated. More extreme SLR exposure assumptions result in greater levels of energy infrastructure capacity exposure including as much as 39 percent of all U.S. refining capacity based on current operating levels. This research and its results show that while fossil fuel industries are often referenced as part of the climate change problem, these industries will likely be more than proportionally exposed to the negative impacts of various climate change outcomes relative to other industrial sectors of the U.S. economy. This has important implications for the U.S. and global energy supplies and costs, as well as for the U.S. regional economies reliant on coastal energy infrastructure and its supporting industries.