期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers
1
作者 Fayi Yan He Lu Shijie Feng 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1493-1514,共22页
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified... Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter. 展开更多
关键词 Liquefied natural gas numerical simulation vapor-liquid two-phase flow heat transfer helically coiled tube-intube heat exchanger
下载PDF
Simulation Study on Heat Value Control System of Natural Gas Used for Color TV Tubes Production 被引量:1
2
作者 郑斌 《Journal of Beijing Institute of Technology》 EI CAS 2006年第3期283-287,共5页
In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the wh... In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the whole system is established, and simulation of the system is adopted in Matlab/Simulink. The simulation result shows that the feedback system with feed-forward block controls the heat value very well, and the simulation result can effectively guide the engineering design of the heat value control system, and the efficiency of engineering is improved. 展开更多
关键词 natural gas heat value control system simulation
下载PDF
Performance enhancement of water bath heater at natural gas city gate station using twisted tubes
3
作者 P.Soleimani M.Khoshvaght-Aliabadi +1 位作者 H.Rashidi H.Bahmanpour 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期165-179,共15页
Natural gas is transported from producing regions to consumption regions by using transmission pipelines at high pressures. At consumption regions, the pressure of natural gas is reduced in city gate stations(CGSs). B... Natural gas is transported from producing regions to consumption regions by using transmission pipelines at high pressures. At consumption regions, the pressure of natural gas is reduced in city gate stations(CGSs). Before the pressure reduction process, the temperature of natural gas is increased usually by using a water bath heater,which burns natural gas as fuel, to protect against freezing of natural gas. These types of heat exchangers have a low efficiency and consume a lot of fuel to generate the required heat. In the current study, the twisted configuration of the heating coil is proposed and investigated to enhance the heat transfer through a water bath heater with a nominal capacity of 1000 m^3·h^-1. Firstly, the implementation procedure is validated with data collected from the CGS of Qaleh-Jiq(located in Golestan province of Iran). A very good agreement is achieved between the obtained results and the real data. Then, three different twist ratios are considered to examine the twisting effects. The proposed technique is evaluated in the terms of velocity, temperature, and pressure variations, and the results are compared with the conventional case, i.e. straight configuration. It is found that both the heat transfer rate and the pressure drop augment as the twist ratio is raised. Finally, it is concluded that the twisted tubes can reduce the length of the gas coil by about 12.5% for the model with low twist ratio, 18.75% for the model with medium twist ratio, and 25% for the model with high twist ratio as compared to the straight configuration. 展开更多
关键词 natural gas city GATE STATION Water BATH heatER heat TRANSFER enhancement TWISTED tube
下载PDF
CO_2 selective hydrogenation to synthetic natural gas(SNG) over four nano-sized Ni/ZrO_2 samples:ZrO_2 crystalline phase & treatment impact 被引量:3
4
作者 Min Chen Zhanglong Guo +2 位作者 Jian Zheng Fangli Jing Wei Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1070-1077,共8页
Two type zirconia (monoclinic and tetragonal phase ZrO2) carriers were synthesized via hydrothermal route, and nano-sized zirconia supported nickel catalysts were prepared by incipient impregnation then followed therm... Two type zirconia (monoclinic and tetragonal phase ZrO2) carriers were synthesized via hydrothermal route, and nano-sized zirconia supported nickel catalysts were prepared by incipient impregnation then followed thermal treatment at 300 °C to 500 °C, for the CO2selective hydrogenation to synthetic natural gas (SNG). The catalysts were characterized by XRD, CO2-TPD-MS, XPS, TPSR (CH4, CO2) techniques. For comparison, the catalyst NZ-W-400 (monoclinic) synthesized in water solvent exhibited a better catalytic activity than the catalyst NZ-M-400 (tetragonal) prepared in methanol solvent. The catalyst NZ-W-400 displayed more H2absorbed sites, more basic sites and a lower temperature of initial CO2activation. Then, the thermal treatment of monoclinic ZrO2supported nickel precursor was manufactured at three temperature of 350, 400, 500 °C. The TPSR experiments displayed that there were the lower temperature for CO2activation and initial conversion (185 °C) as well as the lower peak temperature of CH4generation (318 °C), for the catalyst calcined at 500 °C. This sample contained the more basic sites and the higher catalytic activity, evidenced byCO2-TPD-MS and performance measurement. As for the NZ-W-350 sample, which exhibited the less basic sites and the lower catalytic activity, its initial temperature for CO2activation and conversion was higher (214 °C) as well as the higher peak temperature of CH4formation (382 °C). © 2016 Science Press 展开更多
关键词 Carbon dioxide Catalyst activity Catalysts Chemical activation heat treatment HYDROGENATION natural gas Nickel Organic solvents ZIRCONIA Zirconium alloys
下载PDF
Technical and Economic Aspects and Experience from 6 Years of Operating the Technology Using the Waste Heat from the Exhaust Gases of Heat Sources and 3 Years of Operating a Heating Plant in an Autonomous, Island Regime 被引量:1
5
作者 Imrich Discantiny 《Journal of Geological Resource and Engineering》 2019年第2期39-44,共6页
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p... This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level. 展开更多
关键词 natural gas (NG) liquefied natural gas (LNG) liquefied propane gas (LPG) combined heat & power (CHP) renewable energy sources (RES) waste heat recovery (WHR) international gas union (IGU)
下载PDF
Heavy Duty Natural Gas Single Cylinder Research Engine Installation, Commissioning, and Baseline Testing
6
作者 Juan Felipe Rodriguez Hui Xu +3 位作者 Greg Hampson Bret Windom Anthony Marchese Daniel B. Olsen 《Energy and Power Engineering》 2022年第6期217-232,共16页
Natural Gas (NG) Internal Combustion Engines (ICE) are a promising alternative to diesel engines for on-road heavy-duty applications to reduce greenhouse gas and harmful pollutant emissions. NG engines have not been w... Natural Gas (NG) Internal Combustion Engines (ICE) are a promising alternative to diesel engines for on-road heavy-duty applications to reduce greenhouse gas and harmful pollutant emissions. NG engines have not been widely adopted due to the lower thermal efficiency compared with diesel engine counterparts. To develop the base knowledge required to reach the desired efficiency, a Single Cylinder Engine (SCE) is the most effective platform to acquire reliable and repeatable data. A SCE test cell was developed using a Cummins 15-liter six-cylinder heavy-duty engine block modified to fire one cylinder (2.5-liter displacement). A Woodward Large Engine Control Module (LECM) is integrated to permit implementation of real-time advanced combustion control. Intake and exhaust characteristics, fuel composition, and exhaust gas recirculated substitution rate (EGR) are fully adjustable. A high-speed data acquisition system acquires in-cylinder, intake, and exhaust pressure for combustion analysis. The baseline testing shows reliable and consistent results for engine thermal efficiency, indicated mean effective pressure (IMEP), and coefficient of variance of the IMEP over a wide range of operating conditions while achieving effective control of all engine control and operation variables. This test cell will be used to conduct a research program to develop new and innovative control algorithms and CFD optimized combustion chamber designs, allowing ultra-high efficiency and low emissions for NG ICE heavy-duty on-road applications. 展开更多
关键词 Single Cylinder Engine heat Release Heavy Duty natural gas End gas Auto-Ignition
下载PDF
Electricity Pricing for Natural Gas CHP Projects The Higher, the Better?
7
作者 Chen Guowei Guo Xicheng He Chun 《Electricity》 2011年第3期23-26,共4页
Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretic... Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society. 展开更多
关键词 combined heat and power (CHP) natural gas power generation on-grid electricity price energy saving
下载PDF
Analysis of the Impact of Thermochemical Recuperation of Waste Heat on the Energy Efficiency of Gas Carriers 被引量:2
8
作者 Oleksandr Cherednichenko Vira Mitienkova 《Journal of Marine Science and Application》 CSCD 2020年第1期72-82,共11页
Enlarging the fleet of gas carriers would make it possible to respond to the growing demand for hydrocarbon gases,but it will increase carbon dioxide emissions.The International Maritime Organization(IMO)has developed... Enlarging the fleet of gas carriers would make it possible to respond to the growing demand for hydrocarbon gases,but it will increase carbon dioxide emissions.The International Maritime Organization(IMO)has developed the energy efficiency design index(EEDI)with the objective of carbon emission reduction for new ships.In this paper,thirty gas carriers transporting liquefied natural gas(LNG)and liquefied petroleum gas(LPG)and equipped with various types of main engines are considered.As shown by the calculation of the attained EEDI,2 of the 13 LPG carriers and 6 of the 17 LNG carriers under study do not comply with the EEDI requirements.To meet the stringent EEDI requirements,applying thermochemical regenerators(TCRs)fed by main engine exhaust gases is suggested.Mathematical modeling is applied to analyze the characteristics of the combined gas-turbine-electric and diesel-electric power plant with thermochemical recuperation of the exhaust gas heat.Utilizing TCR on gas carriers with engines fueled by syngas produced from boil-off gas(BOG)reduces the carbon content by 35%and provides the energy efficiency required by IMO without the use of other technologies. 展开更多
关键词 Liquefied natural gas Liquefied petroleum gas gas carriers EEDI Thermochemical heat recovery gas-turbine engine Boil-off gas
下载PDF
Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat 被引量:5
9
作者 Oleksandr Cherednichenko Serhiy Serbin 《Journal of Marine Science and Application》 CSCD 2018年第1期122-130,共9页
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel e... One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered.It is suggested to conduct the study with the help of mathematical modeling methods.The model takes into account basic physical correlations,material and thermal balances,phase equilibrium,and heat and mass transfer processes.The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel.In such a plant,it is possible to reduce the specific fuel consumption of the diesel engine by 20%.The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6.When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products,the efficiency coefficient of the plant increases by 4%–5%. 展开更多
关键词 Liquefied natural gas THERMOCHEMICAL heat recovery gas TURBINE ENGINE DIESEL ENGINE Boil-off gas EFFICIENCY
下载PDF
Numerical Simulation Study on the Effect of Horizontal Well Reservoir Stimulation for Gas Hydrate Production 被引量:1
10
作者 LI Xiaoyang TIAN Yingying +5 位作者 ZHANG Xin SONG Gang ZHAO Ming LIANG Jinqiang HUANG Wei MENG Fanle 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期701-712,共12页
A new gas hydrate reservoir stimulation method of in-situ fracturing with transient heating is proposed, in line with analysis of the technological bottlenecks faced by marine gas hydrate production. This method injec... A new gas hydrate reservoir stimulation method of in-situ fracturing with transient heating is proposed, in line with analysis of the technological bottlenecks faced by marine gas hydrate production. This method injects the developed chemical reagents into a hydrate reservoir through hydraulic fracturing, releasing heat during the chemical reaction to increase the hydrate decomposition rate. The chemical reaction product furthermore has a honeycomb structure to support fractures and increase reservoir permeability. Based on the geological model of natural gas hydrate in the South China Sea, three development methods are simulated to evaluate hydrate production capacity, consisting of horizontal well, fractured horizontal well and in-situ fracturing with transient heating well. Compared with the horizontal well, the simulation results show that the cumulative gas production of the fractured horizontal well in one year is 7 times that of the horizontal well, while the cumulative gas production of in-situ fracturing with transient heating well is 12 times that of the horizontal well, which significantly improves daily efficiency and cumulative gas production. In addition, the variation patterns of hydrate saturation and temperature-pressure fields with production time for the three exploitation plans are presented, it being found that three sensitive parameters of fracture conductivity, fracture half-length and fracture number are positively correlated with hydrate production enhancement. Through the simulations, basic data and theoretical support for the optimization of gas hydrate reservoir stimulation scheme has been provided. 展开更多
关键词 natural gas hydrate horizontal well reservoir stimulation transient heating seepage channel hydraulic fracturing production enhancement technology
下载PDF
WHR (Waste Heat Technology) Method in Tri-generation Model 被引量:2
11
作者 Imrich Discantiny 《Journal of Geological Resource and Engineering》 2015年第1期37-41,共5页
This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has be... This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has been in 2009 developed and operated by companies HELORO s.r.o, and COMTHERM s.r.o. 展开更多
关键词 NG natural gas GB gas boiler) CHP (combined heat power) CHPC (combined heat power cool) CGU(co-generation unit) ABSU (absorption unit) TC (thermal condenser) HE1 HE2 heat exchanger).
下载PDF
Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers
12
作者 Jitan WU Yonglin JU 《Frontiers in Energy》 SCIE CSCD 2020年第4期683-698,共16页
The brazed plate heat exchanger(BPHE)has some advantages over the plate-fin heat exchanger(PFHE)when used in natural gas liquefaction processes,such as the convenient installation and transportation,as well as the hig... The brazed plate heat exchanger(BPHE)has some advantages over the plate-fin heat exchanger(PFHE)when used in natural gas liquefaction processes,such as the convenient installation and transportation,as well as the high tolerance of carbon dioxide(CO2)impurities.However,the BPHEs with only two channels cannot be applied directly in the conventional liquefaction processes which are designed for multi-stream heat exchangers.Therefore,the liquefaction processes using BPHEs are different from the conventional PFHE processes.In this paper,four different liquefaction processes using BPHEs are optimized and comprehensively compared under respective optimal conditions.The processes are compared with respect to energy consumption,economic performance,and robustness.The genetic algorithm(GA)is applied as the optimization method and the total revenue requirement(TRR)method is adopted in the economic analysis.The results show that the modified single mixed refrigerant(MSMR)process with part of the refrigerant flowing back to the compressor at low temperatures has the lowest specific energy consumption but the worst robustness of the four processes.The MSMR with fully utilization of cold capacity of the refrigerant shows a satisfying robustness and the best economic performance.The research in this paper is helpful for the application of BPHEs in natural gas liquefaction processes. 展开更多
关键词 liquefied natural gas brazed plate heat exchanger energy consumption economic performance ROBUSTNESS
原文传递
Transforming Waste Heat into“Renewable Heat”
13
作者 Imrich Discantiny 《Journal of Geological Resource and Engineering》 2021年第2期38-42,共5页
Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial l... Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial low power heat into“renewable heat”useful to enhance the efficiency of the system is essential and actual innovation in the field of worldwide environmental protection.By introducing and defining the terminology of low-potential,“renewable”,“green heat”has created a new,parallel category of research in the energy sector.Traditional co-generation systems produce heat for space heating and hot water and generate electricity.Moving to tri-generation allows growing demand for air conditioning for homes,offices and commercial spaces such as server rooms and switchboards to be met simultaneously or on a seasonal basis.Tri-generation,or combined cooling,heat and power,is the process by which some of the heat produced by a co-generation plant is used to generate chilled water for air conditioning or refrigeration.Usually an absorption chiller is linked to the plant to provide this functionality.The technical solution is related to the new efficient manner and system of simultaneous generation of heat/cold from multiple heat sources,which has not yet been known,but in practice required.New system also enables advantageous utilization of solar power in supporting of the cooling output.The innovative system can be operated also within the existing central heating distribution systems. 展开更多
关键词 natural gas(NG) gas boiler(GB) combined heat&power(CHP) combined heat&power&cool(CHPC) co-generation unit(CGU) absorption cooling unit(AU) renewable heat sources(RES) 3-generation technology(3GT) renewable heat(RH) waste heat recovery technology(WHRT).
下载PDF
Techno-economic assessment of a chemical looping splitting system for H2 and CO Co-generation 被引量:3
14
作者 Hao Peng Zichen Di +2 位作者 Pan Gong Fengling Yang Fangqin Cheng 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期338-350,共13页
The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) sepa... The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability. 展开更多
关键词 natural gas reforming Chemical looping heat integration coupling Techno-economic assessment HYDROGEN
下载PDF
双燃料船用发动机废能回收系统的技术经济比较 被引量:1
15
作者 Ugo Campora Tommaso Coppola +2 位作者 Luca Micoli Luigia Mocerino Valerio Ruggiero 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第4期809-822,共14页
Nowadays alternative and innovative energy recovery solutions are adopted on board ships to reduce fuel consumption and harmful emissions.According to this,the present work compares the engine exhaust gas waste heat r... Nowadays alternative and innovative energy recovery solutions are adopted on board ships to reduce fuel consumption and harmful emissions.According to this,the present work compares the engine exhaust gas waste heat recovery and hybrid turbocharger technologies,which are used to improve the efficiency of a dual-fuel four-stroke(DF)marine engine.Both solutions aim to satisfy partly or entirely the ship’s electrical and/or thermal loads.For the engine exhaust gas waste heat recovery,two steam plant schemes are considered:the single steam pressure and the variable layout(single or dual steam pressure plant).In both cases,a heat recovery steam generator is used for the electric power energy generation through a steam turbine.The hybrid turbocharger is used to provide a part of the ship’s electric loads as well.The thermodynamic mathematical models of DF engines,integrated with the energy recovery systems,are developed in a Matlab-Simulink environment,allowing the comparison in terms of performance at different engine loads and fuels,which are Natural Gas(NG)and High Fuel Oil(HFO).The use of NG always involves better efficiency of the system for all the engine working conditions.It results that the highest efficiency value achievable is 56%at 50%maximum continuous rating(MCR)engine load. 展开更多
关键词 Matlab-simulink simulation Marine dual-fuel engine Waste heat recovery Hybrid turbocharger Energy efficiency natural gas Economic analysis
下载PDF
Analysis and Economic Evaluation of Hourly Operation Strategy Based on MSW Classification and LNG Multi-Generation System
16
作者 Xueqing Lu Yuetao Shi Jinsong Li 《Energy Engineering》 EI 2023年第6期1325-1352,共28页
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun... In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system. 展开更多
关键词 Municipal solid waste liquefied natural gas energy recovery combined power heating and cooling determining power by heating load net electrical efficiency energy utilization efficiency
下载PDF
Development of mobile miniature natural gas liquefiers
17
作者 Yanxing ZHAO Maoqiong GONG +2 位作者 Haocheng WANG Hao GUO Xueqiang DONG 《Frontiers in Energy》 SCIE CSCD 2020年第4期667-682,共16页
With increasing consumption of natural gas(NG),small NG reservoirs,such as coalbed methane and oil field associated gas,have recently drawn significant attention.Owing to their special characteristics(e.g.,scattered d... With increasing consumption of natural gas(NG),small NG reservoirs,such as coalbed methane and oil field associated gas,have recently drawn significant attention.Owing to their special characteristics(e.g.,scattered distribution and small output),small-scale NG liquefiers are highly required.Similarly,the mixed refrigerant cycle(MRC)is suitable for small-scale liquefaction systems due to its moderate complexity and power consumption.In consideration of the above,this paper reviews the development of mobile miniature NG liquefiers in Technical Institute of Physics and Chemistry(TIPC),China.To effectively liquefy the scattered NG and overcome the drawbacks of existing technologies,three main improvements,i.e.,low-pressure MRC process driven by oil-lubricated screw compressor,compact cold box with the new designed heat exchangers,and standardized equipment manufacturing and integrated process technology have been made.The development pattern of"rapid cluster application and flexible liquefaction center"has been eventually proposed.The small-scale NG liquefier developed by TIPC has reached a minimum liquefaction power consumption of about 0.35 kW.h/Nm^(3).It is suitable to exploit small remote gas reserves which can also be used in boil-off gas reliquefaction and distributed peak-shaving of pipe networks. 展开更多
关键词 natural gas mobile miniature liquefiers mixed refrigerant cycle vapor liquid equilibrium heat transfer
原文传递
Zero Net Energy Consuming Residential Houses
18
作者 Z.Melikyan S.Egnatosyan 《Journal of Energy and Power Engineering》 2018年第12期578-590,共13页
Preliminary investigation of the assigned task shows that the energy efficiency of residential houses is conditioned by the quantity of energy,consumed by all internal energy providing systems that serve for creation ... Preliminary investigation of the assigned task shows that the energy efficiency of residential houses is conditioned by the quantity of energy,consumed by all internal energy providing systems that serve for creation of comfort microclimate in all rooms of the building.The energy consuming systems of residential houses are:heating,ventilation,air conditioning,domestic hot water providing,tap water supplying systems and other life supporting facilities.If the listed systems consume possibly least quantity of energy or so cold zero net energy,the building can be qualified as energy efficient.The authors of this article try to give right answers how to provide the best,cheapest and ecologically safe solutions of assigned tasks.One of the radical solutions of the problem is the development and use of fossil fuel non-consuming installations of energy production.To overcome of mentioned problems the authors developed new type of thermal and electrical energy generating high efficiency local and central systems.For this reason,the authors of this study decided to develop new generation of heating,ventilation and domestic hot water supplying high efficiency integrated systems. 展开更多
关键词 heating SYSTEM FOSSIL fuel non-consuming local heating SYSTEM natural ventilation domestic hot water PROVISION REFRIGERANT gas ENERGY consumption ENERGY saving
下载PDF
Active-reactive power scheduling of integrated electricity-gas network with multi-microgrids
19
作者 Tao JIANG Xinru DONG +3 位作者 Rufeng ZHANG Xue LI Houhe CHEN Guoqing LI 《Frontiers in Energy》 SCIE CSCD 2023年第2期251-265,共15页
Advances in natural gas-fired technologies have deepened the coupling between electricity and gas networks,promoting the development of the integrated electricity-gas network(IEGN)and strengthening the interaction bet... Advances in natural gas-fired technologies have deepened the coupling between electricity and gas networks,promoting the development of the integrated electricity-gas network(IEGN)and strengthening the interaction between the active-reactive power flow in the power distribution network(PDN)and the natural gas flow in the gas distribution network(GDN).This paper proposes a day-ahead active-reactive power scheduling model for the IEGN with multi-microgrids(MMGs)to minimize the total operating cost.Through the tight coupling relationship between the subsystems of the IEGN,the potentialities of the IEGN with MMGs toward multi-energy cooperative interaction is optimized.Important component models are elaborated in the PDN,GDN,and coupled MMGs.Besides,motivated by the non-negligible impact of the reactive power,optimal inverter dispatch(OID)is considered to optimize the active and reactive power capabilities of the inverters of distributed generators.Further,a second-order cone(SOC)relaxation technology is utilized to transform the proposed active-reactive power scheduling model into a convex optimization problem that the commercial solver can directly solve.A test system consisting of an IEEE-33 test system and a 7-node natural gas network is adopted to verify the effectiveness of the proposed scheduling method.The results show that the proposed scheduling method can effectively reduce the power losses of the PDN in the IEGN by 9.86%,increase the flexibility of the joint operation of the subsystems of the IEGN,reduce the total operation costs by $32.20,and effectively enhance the operation economy of the IEGN. 展开更多
关键词 combined cooling heating and power(CCHP) integrated energy systems(IES) natural gas power distribution system gas distribution system
原文传递
Numerical Study of Heat Transfer Characteristic for Subcooled Falling Film outside the Shaped Tubes under Rolling Motion
20
作者 HAN Hui WANG Junqi +1 位作者 WANG Shaowei LI Yuxing 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期922-932,共11页
The heat transfer performance of spiral wound heat exchanger used in the floating liquefied natural gas(FLNG)may be significantly affected by the sloshing conditions.In this paper,a three-dimensional numerical model c... The heat transfer performance of spiral wound heat exchanger used in the floating liquefied natural gas(FLNG)may be significantly affected by the sloshing conditions.In this paper,a three-dimensional numerical model combined with the dynamic mesh technology is conducted to study subcooled falling film heat transfer under static and sloshing conditions.The three-dimensional velocity distribution of the liquid film on the shell side is observed.The effects of cross-section shape of heat exchange tubes,Reynolds numbers and sloshing parameters on heat transfer characteristics are analyzed.The results indicate that the heat transfer performance of the egg-shaped tube is superior to that of the elliptical and circular tube under both static and sloshing conditions due to significant heat transfer improvement in the lower half of the tube.The heat transfer coefficients of three different kinds of tubes decrease under sloshing conditions.When the rolling amplitude is 6°,the average heat transfer coefficients of the circular tube,elliptical tube and egg-shaped tube are reduced by 2.1%,3.7%and 4.9%respectively.Under the current sloshing parameters,increasing the rolling amplitude,the heat transfer coefficients of three different tubes are slightly increased,while the sloshing period has little effect on heat transfer.The egg-shaped tube and elliptical tube are greatly affected by sloshing motion at the low Reynolds number,while the effect is relatively small at the high Reynolds number. 展开更多
关键词 falling film flow sloshing condition spiral wound heat exchanger floating liquefied natural gas
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部