用单词标注图像会产生歧义或噪声,故采用句子标注商品图像,以准确刻画商品特性.现有商品图像句子标注方法存在特征学习不充分的问题,针对该问题,提出基于核特征模型抽取图像的形状、颜色和梯度3种核特征,并在多核学习模型内融合生成新特...用单词标注图像会产生歧义或噪声,故采用句子标注商品图像,以准确刻画商品特性.现有商品图像句子标注方法存在特征学习不充分的问题,针对该问题,提出基于核特征模型抽取图像的形状、颜色和梯度3种核特征,并在多核学习模型内融合生成新特征,基于新特征完成商品图像分类,检索视觉相似的训练图像,摘录其标题中的关键文本标注商品图像.最后,从信息检索和机器翻译两个角度分别评价标注性能.实验表明:基于新特征能获取最优的商品图像分类性能,图像分类缩小了图像检索范围,有助于改善检索性能;标注模型的MAP(Mean Average Precision)值和P-R(Precision-Recall)指标均优于基线;所标句子与图像内容语义相关,且连贯性和流畅性更优.展开更多
文摘用单词标注图像会产生歧义或噪声,故采用句子标注商品图像,以准确刻画商品特性.现有商品图像句子标注方法存在特征学习不充分的问题,针对该问题,提出基于核特征模型抽取图像的形状、颜色和梯度3种核特征,并在多核学习模型内融合生成新特征,基于新特征完成商品图像分类,检索视觉相似的训练图像,摘录其标题中的关键文本标注商品图像.最后,从信息检索和机器翻译两个角度分别评价标注性能.实验表明:基于新特征能获取最优的商品图像分类性能,图像分类缩小了图像检索范围,有助于改善检索性能;标注模型的MAP(Mean Average Precision)值和P-R(Precision-Recall)指标均优于基线;所标句子与图像内容语义相关,且连贯性和流畅性更优.