This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS), which are systems that can artificially provide natural lighting as well as a reali...This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS), which are systems that can artificially provide natural lighting as well as a realistic outside view, with properties comparable to those of real windows and skylights. Examples of employing Radiance as a simulation tool to predict the lighting performance of such solutions are shown, for a particular case study of a VNLS prototype displaying variations of a simplified view of overcast, clear, and partly cloudy skies. Measurement and simulation were conducted to evaluate the iUuminance distribution on workptane level. The key point of this study is to show that simulations can be used to compare an actual VNLS prototype with a hypothetical real window under the same sky scenes, which was physically not possible, since the test room was not located at the building's facade. It is found that the investigated prototype yields a less rapidly drop iUuminance distribution and a larger average illuminance than the corresponding real window, under the overcast (52 lx compared to 28 lx) and partly cloudy (102 lx compared to 80 lx) sky scenes. Under the clear sky scene, the real window yields a larger averase illuminance (97 lx) compared to the prototype (71 lx), due to the influence of direct sunlight.展开更多
Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and...Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and makes quantitative evaluation on the quality of current interior natural ventilation and lighting for two typical residential buildings by three indexes,including wind speed,static wind area ratio and satisfaction ratio about minimum lighting coefficient. Based on that, this paper conducts the passive design optimization, and establishes the quantitative association and reevaluation among the passive reformation design, natural ventilation,and lighting environmental quality,proposing the general strategy for the existing residential buildings to respond to the passive reformation design of the natural ventilation and lighting. The special reconstruction of core functionary space of integration of "the living room + dining room + partial space"is researched,and the redesign for the optimization and replacement of both indoor and outdoor enclosure parts is explored,which is expected to provide practical exploration on the strategies for passive construction of spatial natural environmental quality within a large number of highly-energy-consumed residential buildings in China,as well as the green design of residential buildings.展开更多
AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 ...AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 classes in 4 primary schools in Foshan participated in this study.The whole randomization method was adopted to include classes as a group according to 1:1 randomized control.Classrooms in the control group were illuminated by usual light,and classrooms in the intervention group were illuminated by artificial natural light.All students received uncorrected visual acuity and best-corrected visual acuity measurement,non-cycloplegic autorefraction,ocular biometric examination,slit lamp and strabismus examination.Three-year follow-up,the students underwent same procedures.Myopia was defined as spherical equivalent refraction≤-0.50 D and uncorrected visual acuity<20/20.RESULTS:There were 894 students in the control group and 946 students in the intervention group with a mean±SD age of 7.50±0.53y.The three-year cumulative incidence rate of myopia was 26.4%(207 incident cases among 784 eligible participants at baseline)in the control group and 21.2%(164 incident cases among 774 eligible participants at baseline)in the intervention group[difference of 5.2%(95%CI,3.7%to 10.1%);P=0.035].There was also a significant difference in the three-year change in spherical equivalent refraction for the control group(-0.81 D)compared with the intervention group[-0.63 D;difference of 0.18 D(95%CI,0.08 to 0.28 D);P<0.001].Elongation of axial length was significantly different between in the control group(0.77 mm)and the intervention group[0.72 mm;difference of 0.05 mm(95%CI,0.01 to 0.09 mm);P=0.003].CONCLUSION:Artificial natural light in the classroom of primary schools can result in reducing incidence rate of myopia during a period of three years.展开更多
Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that P...Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.展开更多
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the...The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.展开更多
Dengue vector is responsible for millions of deaths every year and has caused disastrous impacts on health systems. The continuous use of chemical insecticides, such as carbamates, pyrethroids and organophosphates gen...Dengue vector is responsible for millions of deaths every year and has caused disastrous impacts on health systems. The continuous use of chemical insecticides, such as carbamates, pyrethroids and organophosphates generates resistant populations of the mosquito, therefore, new control methods must be investigated. The joint action of the population and guidelines for preventing the reproduction of the mosquito associated with the use of photoactivatable insecticides can be the alternative for the control of epidemiological outbreaks in affected regions. In this study, the photo-larvicidal activity of Photogem^(PG), a derivative of hematoporphyrin, was investigated against 2nd-early 3rd instar of Aedes aegypti larvae (Diptera: Culicidae) under different lighting conditions (artificial lighting system and sunlight). The dynamics of PG accumulation was characterized by CLSM (confocal laser scanning microscopy) and total time PG eliminationin solution was investigated by ultraviolet-visible spectrophotometry. The maximum photo-activity of PG was observed in 0.5 h under sunlight exposure which achieved 100% larval mortality. Fluorescence images showed a uniform distribution of PG along the digestive tract. PG remained stable in the sunlight for 48 h and in an artificial lighting system for longer periods, therefore, it can be used for the control ofAedes aegypti larvae as a new alternative to chemical insecticides. The method is considered environmentally friendly due to its rapid degradation in the presence of light. Further studies are required, so that the potential of the technique can be explored in real breeding places.展开更多
A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by abso...A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ = 190-800 nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃ 〉 300 ℃ 〉 340 ℃ 〉 220 ℃ 〉 180 ℃.展开更多
It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of exp...It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.展开更多
INTRODUCTION This project began life as an aspiration of an individual client who is not a developer by profession.He is in the finance business,and in the course of buying some property for an investment,began studyi...INTRODUCTION This project began life as an aspiration of an individual client who is not a developer by profession.He is in the finance business,and in the course of buying some property for an investment,began studying how he might develop it.So he embarked on a mission to examine some small multi-unit properties to learn about how they fared in the current Dallas market.展开更多
Current highway tunnel lighting control systems are often manually controlled, resulting in significant energy waste. This article designs a fuzzy control algorithm for tunnel lighting energy control systems. The syst...Current highway tunnel lighting control systems are often manually controlled, resulting in significant energy waste. This article designs a fuzzy control algorithm for tunnel lighting energy control systems. The system uses LED (Light Emitting Diode) lighting, so the fuzzy control algorithm is designed for LED lights. The traffic and the natural illumination level are used as parameters in the intelligent lighting control algorithm. This system has been deployed in the Lengshui tunnel on the 49th provincial highway of Zhejiang province and operated for more than six months. The performance results show that the energy conservation system provides sufficient lighting levels for traffic safety with significant energy conservation.展开更多
The circadian clock is known to increase plant growth and fitness, and is thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, N...The circadian clock is known to increase plant growth and fitness, and is thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light- and dark-adapted photosynthetic rates (Ac) throughout a 24 h clay in empty vector-transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA-and NaPhyB1-silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field, irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac. Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark-adapted plants at night; irLHY plants lost these time-dependent responses. The role of NaLHY in gating photosynthesis is independent of the light-depen- dent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light-mediated in native tobacco.展开更多
文摘This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS), which are systems that can artificially provide natural lighting as well as a realistic outside view, with properties comparable to those of real windows and skylights. Examples of employing Radiance as a simulation tool to predict the lighting performance of such solutions are shown, for a particular case study of a VNLS prototype displaying variations of a simplified view of overcast, clear, and partly cloudy skies. Measurement and simulation were conducted to evaluate the iUuminance distribution on workptane level. The key point of this study is to show that simulations can be used to compare an actual VNLS prototype with a hypothetical real window under the same sky scenes, which was physically not possible, since the test room was not located at the building's facade. It is found that the investigated prototype yields a less rapidly drop iUuminance distribution and a larger average illuminance than the corresponding real window, under the overcast (52 lx compared to 28 lx) and partly cloudy (102 lx compared to 80 lx) sky scenes. Under the clear sky scene, the real window yields a larger averase illuminance (97 lx) compared to the prototype (71 lx), due to the influence of direct sunlight.
基金Sponsored by the Key Project of National Natural Science Foundation of China (Grant No.51138004)the South China Key Laboratory Fund (Grant No.20121458321)the Architect Design on Energy-saving Residence in Shanghai (Grant No.08-2A-0183-zong)
文摘Based on the current indoor natural ventilation and lighting in the space of traditional residential buildings,this paper starts from the passive-design optimization of the spatial natural ventilation and lighting,and makes quantitative evaluation on the quality of current interior natural ventilation and lighting for two typical residential buildings by three indexes,including wind speed,static wind area ratio and satisfaction ratio about minimum lighting coefficient. Based on that, this paper conducts the passive design optimization, and establishes the quantitative association and reevaluation among the passive reformation design, natural ventilation,and lighting environmental quality,proposing the general strategy for the existing residential buildings to respond to the passive reformation design of the natural ventilation and lighting. The special reconstruction of core functionary space of integration of "the living room + dining room + partial space"is researched,and the redesign for the optimization and replacement of both indoor and outdoor enclosure parts is explored,which is expected to provide practical exploration on the strategies for passive construction of spatial natural environmental quality within a large number of highly-energy-consumed residential buildings in China,as well as the green design of residential buildings.
基金Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120011)Medical Research,Foshan Health and Wellness Department(No.20220374).
文摘AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 classes in 4 primary schools in Foshan participated in this study.The whole randomization method was adopted to include classes as a group according to 1:1 randomized control.Classrooms in the control group were illuminated by usual light,and classrooms in the intervention group were illuminated by artificial natural light.All students received uncorrected visual acuity and best-corrected visual acuity measurement,non-cycloplegic autorefraction,ocular biometric examination,slit lamp and strabismus examination.Three-year follow-up,the students underwent same procedures.Myopia was defined as spherical equivalent refraction≤-0.50 D and uncorrected visual acuity<20/20.RESULTS:There were 894 students in the control group and 946 students in the intervention group with a mean±SD age of 7.50±0.53y.The three-year cumulative incidence rate of myopia was 26.4%(207 incident cases among 784 eligible participants at baseline)in the control group and 21.2%(164 incident cases among 774 eligible participants at baseline)in the intervention group[difference of 5.2%(95%CI,3.7%to 10.1%);P=0.035].There was also a significant difference in the three-year change in spherical equivalent refraction for the control group(-0.81 D)compared with the intervention group[-0.63 D;difference of 0.18 D(95%CI,0.08 to 0.28 D);P<0.001].Elongation of axial length was significantly different between in the control group(0.77 mm)and the intervention group[0.72 mm;difference of 0.05 mm(95%CI,0.01 to 0.09 mm);P=0.003].CONCLUSION:Artificial natural light in the classroom of primary schools can result in reducing incidence rate of myopia during a period of three years.
文摘Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.
文摘The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.
文摘Dengue vector is responsible for millions of deaths every year and has caused disastrous impacts on health systems. The continuous use of chemical insecticides, such as carbamates, pyrethroids and organophosphates generates resistant populations of the mosquito, therefore, new control methods must be investigated. The joint action of the population and guidelines for preventing the reproduction of the mosquito associated with the use of photoactivatable insecticides can be the alternative for the control of epidemiological outbreaks in affected regions. In this study, the photo-larvicidal activity of Photogem^(PG), a derivative of hematoporphyrin, was investigated against 2nd-early 3rd instar of Aedes aegypti larvae (Diptera: Culicidae) under different lighting conditions (artificial lighting system and sunlight). The dynamics of PG accumulation was characterized by CLSM (confocal laser scanning microscopy) and total time PG eliminationin solution was investigated by ultraviolet-visible spectrophotometry. The maximum photo-activity of PG was observed in 0.5 h under sunlight exposure which achieved 100% larval mortality. Fluorescence images showed a uniform distribution of PG along the digestive tract. PG remained stable in the sunlight for 48 h and in an artificial lighting system for longer periods, therefore, it can be used for the control ofAedes aegypti larvae as a new alternative to chemical insecticides. The method is considered environmentally friendly due to its rapid degradation in the presence of light. Further studies are required, so that the potential of the technique can be explored in real breeding places.
文摘A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ = 190-800 nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃ 〉 300 ℃ 〉 340 ℃ 〉 220 ℃ 〉 180 ℃.
文摘It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.
文摘INTRODUCTION This project began life as an aspiration of an individual client who is not a developer by profession.He is in the finance business,and in the course of buying some property for an investment,began studying how he might develop it.So he embarked on a mission to examine some small multi-unit properties to learn about how they fared in the current Dallas market.
基金Supported by the National Basic Research and Development (973) Program of China (No. 2010CB334707)the National Natural Science Foundation of China (No. 60803126)+1 种基金the Program for Zhejiang Provincial Key Innovative Research Team on Sensor Networks (No. 2009R50046)the Zhejiang Provincial Natural Science Foundation (No. Y1101336)
文摘Current highway tunnel lighting control systems are often manually controlled, resulting in significant energy waste. This article designs a fuzzy control algorithm for tunnel lighting energy control systems. The system uses LED (Light Emitting Diode) lighting, so the fuzzy control algorithm is designed for LED lights. The traffic and the natural illumination level are used as parameters in the intelligent lighting control algorithm. This system has been deployed in the Lengshui tunnel on the 49th provincial highway of Zhejiang province and operated for more than six months. The performance results show that the energy conservation system provides sufficient lighting levels for traffic safety with significant energy conservation.
基金supported by European Research Council advanced grant Clockwork Green(No. 293926) to I.T.B.the Global Research Lab program(2012055546) from the National Research Foundation of Korea+1 种基金Human Frontier Science Program(RGP0002/2012)the Max Planck Society
文摘The circadian clock is known to increase plant growth and fitness, and is thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light- and dark-adapted photosynthetic rates (Ac) throughout a 24 h clay in empty vector-transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA-and NaPhyB1-silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field, irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac. Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark-adapted plants at night; irLHY plants lost these time-dependent responses. The role of NaLHY in gating photosynthesis is independent of the light-depen- dent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light-mediated in native tobacco.