In order to ensure the effective analysis and reconstruction of forests,it is key to ensure the quantitative description of their spatial structure.In this paper,a distance model for the optimal stand spatial structur...In order to ensure the effective analysis and reconstruction of forests,it is key to ensure the quantitative description of their spatial structure.In this paper,a distance model for the optimal stand spatial structure based on weighted Voronoi diagrams is proposed.In particular,we provide a novel methodological model for the comprehensive evaluation of the spatial structure of forest stands in natural mixed conifer-broadleaved forests and the formulation of management decision plans.The applicability of the rank evaluation and the optimal solution distance model are compared and assessed for different standard sample plots of natural mixed conifer-broadleaved forests.The effect of crown width on the spatial structure unit of the trees is observed to be higher than that of the diameter at breast height.Moreover,the influence of crown length is greater than that of tree height.There are nine possible spatial structure units determined by the weighted Voronoi diagram for the number of neighboring trees in the central tree,with an average intersection of neighboring crowns reaching 80%.The rank rating of natural forest sample plots is correlated with the optimal solution distance model,and their results are generally consistent for natural forests.However,the rank rating is not able to provide a quantitative assessment.The optimal solution distance model is observed to be more comprehensive than traditional methods for the evaluation of the spatial structure of forest stands.It can effectively reflect the trends in realistic stand spatial structure factors close to or far from the ideal structure point,and accurately assesses the forest spatial structure.The proposed optimal solution distance model improves the integrated evaluation of the spatial structure of forest stands and provides solid theoretical and technical support for sustainable forest management.展开更多
To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
Natural spruce-fir mixed stand is one of the main forest types in the world,and also has huge ecological,economic and social benefits.According to the structural characteristics and succession laws of natural spruce-f...Natural spruce-fir mixed stand is one of the main forest types in the world,and also has huge ecological,economic and social benefits.According to the structural characteristics and succession laws of natural spruce-fir forest,it is urgent and significant to develop scientific management measures for natural spruce-fir mixed stand in line with local conditions.The article outlined the characteristics of the distribution and structure, regeneration and succession laws of natural spruce-fir forest,and analyzed the current situation and existing problems of natural spruce-fir forest management.The following recommendations were eventually made:1) In no cutting area,all logging activities should be banned.In a restricted cutting area,the cutting intensity should be generally controlled within 15%of the stock volume before cutting.On the commodity forest management area, the appropriate cutting intensity should be determined according to the volume per hectare,determine and classification management should be implemented in accordance with the characteristics of forest,to ensure the scientific selective cutting.2) Closure for afforestation,planting and repair planting should be adopted on vegetation-intensive land,sparse shrubs covered land and harvesting slash,in order to accelerate natural regeneration.3) The in situ conservation should be conducted in nature reserves and scientific experiment stations of rare and endangered species,such as Abies chensiensis,Picea neoveitchii,Abies vuanbaoshanensis,to reduce human destruction.4) It is supposed to collect seeds in time,establish nursery,actively establish forest, expand artificial population and promote natural regeneration.展开更多
基金funded by National Key Research and development project(2022YFD2201001)。
文摘In order to ensure the effective analysis and reconstruction of forests,it is key to ensure the quantitative description of their spatial structure.In this paper,a distance model for the optimal stand spatial structure based on weighted Voronoi diagrams is proposed.In particular,we provide a novel methodological model for the comprehensive evaluation of the spatial structure of forest stands in natural mixed conifer-broadleaved forests and the formulation of management decision plans.The applicability of the rank evaluation and the optimal solution distance model are compared and assessed for different standard sample plots of natural mixed conifer-broadleaved forests.The effect of crown width on the spatial structure unit of the trees is observed to be higher than that of the diameter at breast height.Moreover,the influence of crown length is greater than that of tree height.There are nine possible spatial structure units determined by the weighted Voronoi diagram for the number of neighboring trees in the central tree,with an average intersection of neighboring crowns reaching 80%.The rank rating of natural forest sample plots is correlated with the optimal solution distance model,and their results are generally consistent for natural forests.However,the rank rating is not able to provide a quantitative assessment.The optimal solution distance model is observed to be more comprehensive than traditional methods for the evaluation of the spatial structure of forest stands.It can effectively reflect the trends in realistic stand spatial structure factors close to or far from the ideal structure point,and accurately assesses the forest spatial structure.The proposed optimal solution distance model improves the integrated evaluation of the spatial structure of forest stands and provides solid theoretical and technical support for sustainable forest management.
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.
文摘Natural spruce-fir mixed stand is one of the main forest types in the world,and also has huge ecological,economic and social benefits.According to the structural characteristics and succession laws of natural spruce-fir forest,it is urgent and significant to develop scientific management measures for natural spruce-fir mixed stand in line with local conditions.The article outlined the characteristics of the distribution and structure, regeneration and succession laws of natural spruce-fir forest,and analyzed the current situation and existing problems of natural spruce-fir forest management.The following recommendations were eventually made:1) In no cutting area,all logging activities should be banned.In a restricted cutting area,the cutting intensity should be generally controlled within 15%of the stock volume before cutting.On the commodity forest management area, the appropriate cutting intensity should be determined according to the volume per hectare,determine and classification management should be implemented in accordance with the characteristics of forest,to ensure the scientific selective cutting.2) Closure for afforestation,planting and repair planting should be adopted on vegetation-intensive land,sparse shrubs covered land and harvesting slash,in order to accelerate natural regeneration.3) The in situ conservation should be conducted in nature reserves and scientific experiment stations of rare and endangered species,such as Abies chensiensis,Picea neoveitchii,Abies vuanbaoshanensis,to reduce human destruction.4) It is supposed to collect seeds in time,establish nursery,actively establish forest, expand artificial population and promote natural regeneration.