Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi...Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.展开更多
Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynom...Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynomials, Bernoulli numbers;its recurrence formulae and a very simple formula for calculating simultaneously Euler numbers and Euler polynomials. The expansions of Euler polynomials into Fourier series are also obtained;the formulae for obtaining all π<sup>m</sup> as series on k<sup>-m</sup> and for expanding functions into series of Euler polynomials.展开更多
文摘Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.
文摘Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynomials, Bernoulli numbers;its recurrence formulae and a very simple formula for calculating simultaneously Euler numbers and Euler polynomials. The expansions of Euler polynomials into Fourier series are also obtained;the formulae for obtaining all π<sup>m</sup> as series on k<sup>-m</sup> and for expanding functions into series of Euler polynomials.