Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight s...Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.展开更多
Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelect...Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.展开更多
Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P...Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.展开更多
Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t...Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.展开更多
In this paper,natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function(RBF).The nanofluids used were Cu-water or Al...In this paper,natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function(RBF).The nanofluids used were Cu-water or Al_(2)O_(3)-water mixture with nanoparticle volume fractions range of 0≤φ≤0.2.A system of continuity,momentum,and energy partial differential equations was used in modeling the flow and temperature behavior of the fluids.Partial derivatives in the governing equations were approximated using the RBF method.The artificial compressibility model was implemented to overcome the pressure velocity coupling problem that occurs in such equations.Themain goal of this work was to present a simple and efficient method to deal with complex geometries for a variety of problem conditions.To assess the accuracy of the proposed method,several test cases of natural convection in square and triangular cavities were selected.For Rayleigh numbers ranging from 103 to 105,a validation test of natural convection of Cu-water in a square cavity was used.The numerical investigation was then extended to Rayleigh number 106,as well as Al_(2)O_(3)-water nanofluid with a volume fraction range of 0≤φ≤0.2.In a second investigation,the same nanofluids were used in a triangular cavitywith varying volume fractions to test the proposed meshless approach on non-rectangular geometries.The numerical results appear to be in agreement with those from earlier investigations.Furthermore,the suggested meshless method was found to be stable and accurate,demonstrating that it may be a viable alternative for solving natural heat transfer equations of nanofluids in enclosures with irregular geometries.展开更多
The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological...The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological factors is investigated.The analysis combines a traditional numerical approach with machine learning techniques.Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods.The artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error clustering.Parametric analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and micro-rotation.The Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)increase.Variations in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt numbers.Higher(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number distribution.Increased(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt numbers.These findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer properties.By combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering.展开更多
BACKGROUND Robotic resection using the natural orifice specimen extraction surgery I-type F method(R-NOSES I-F)is a novel minimally invasive surgical strategy for the treatment of lower rectal cancer.However,the curre...BACKGROUND Robotic resection using the natural orifice specimen extraction surgery I-type F method(R-NOSES I-F)is a novel minimally invasive surgical strategy for the treatment of lower rectal cancer.However,the current literature on this method is limited to case reports,and further investigation into its safety and feasibility is warranted.AIM To evaluate the safety and feasibility of R-NOSES I-F for the treatment of low rectal cancer.METHODS From September 2018 to February 2022,206 patients diagnosed with low rectal cancer at First Affiliated Hospital of Nanchang University were included in this retrospective analysis.Of these patients,22 underwent R-NOSES I-F surgery(RNOSES I-F group)and 76 underwent conventional robotic-assisted low rectal cancer resection(RLRC group).Clinicopathological data of all patients were collected and analyzed.Postoperative outcomes and prognoses were compared between the two groups.Statistical analysis was performed using SPSS software.RESULTS Patients in the R-NOSES I-F group had a significantly lower visual analog score for pain on postoperative day 1(1.7±0.7 vs 2.2±0.6,P=0.003)and shorter postoperative anal venting time(2.7±0.6 vs 3.5±0.7,P<0.001)than those in the RLRC group.There were no significant differences between the two groups in terms of sex,age,body mass index,tumor size,TNM stage,operative time,intrao-perative bleeding,postoperative complications,or inflammatory response(P>0.05).Postoperative anal and urinary functions,as assessed by Wexner,low anterior resection syndrome,and International Prostate Symptom Scale scores,were similar in both groups(P>0.05).Long-term follow-up revealed no significant differences in the rates of local recurrence and distant metastasis between the two groups(P>0.05).CONCLUSION R-NOSES I-F is a safe and effective minimally invasive procedure for the treatment of lower rectal cancer.It improves pain relief,promotes gastrointestinal function recovery,and helps avoid incision-related complications.展开更多
This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Ber...This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.展开更多
In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Kl...In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.展开更多
Although solar exposure is necessary for human health,phototoxicology induced by excessive UVB and UVA radiation,which involves sunburns,skin aging and even tu-morigenesis,has been widely researched.Sunscreen is one o...Although solar exposure is necessary for human health,phototoxicology induced by excessive UVB and UVA radiation,which involves sunburns,skin aging and even tu-morigenesis,has been widely researched.Sunscreen is one of the most important ways to protect skin from UV phototoxic damage.As well as inorganic and organic UV filters,some natural products or plant extracts with aromatic rings in their structures,such as flavonoids or polyphenols,can absorb UV to reduce sunburn,acting as a natu-ral UV filter;they also show antioxidant or/and anti-inflammatory activity.This could explain why,although there are no officially approval natural commercial sun-filters,more and more commercial sunscreen products containing plant extracts are avail-able on the market.Here we summarize articles focusing on natural UV filters from plant published in the last 6 years,selecting the most significant data in order to better understand the photoprotective activity of natural products and extracts from plants,including their major constituents and main biological effects,methods for evaluating UV radiation resistance,anti-UV radiation experimental models and anti-UV radiation mechanisms.展开更多
In this paper,a viscoelasticity-plastic damage constitutive equation for naturally fractured shale is deduced,coupling nonlinear tensile-shear mixed fracture mode.Dynamic perforation-erosion on fluid re-distribution a...In this paper,a viscoelasticity-plastic damage constitutive equation for naturally fractured shale is deduced,coupling nonlinear tensile-shear mixed fracture mode.Dynamic perforation-erosion on fluid re-distribution among multi-clusters are considered as well.DFN-FEM(discrete fracture network combined with finite element method)was developed to simulate the multi-cluster complex fractures propagation within temporary plugging fracturing(TPF).Numerical results are matched with field injection and micro-seismic monitoring data.Based on geomechanical characteristics of Weiyuan deep shale gas reservoir in Sichuan Basin,SW China,a multi-cluster complex fractures propagation model is built for TPF.To study complex fractures propagation and the permeability-enhanced region evolution,intersecting and competition mechanisms between the fractures before and after TPF treatment are revealed.Simulation results show that:fracture from middle cluster is restricted by the fractures from side-clusters,and side-clusters plugging is benefit for multi fractures propagation in uniformity;optimized TPF timing should be delayed within a higher density or strike of natural fractures;Within a reservoir-featured natural fractures distribution,optimized TPF timing for most clustered method is 2/3 of total fluid injection time as the optimal plugging time under different clustering modes.展开更多
An improved shooting method was presented for solving the natural convention boundary layer equations, with a coupling of the velocity field to the temperature field. The numerical results are consistent with the appr...An improved shooting method was presented for solving the natural convention boundary layer equations, with a coupling of the velocity field to the temperature field. The numerical results are consistent with the approximate solution obtained by former researchers.展开更多
Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor inje...Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposition, and multiphase flow. These equations are discretized based on the finite difference method and are solved with the fully implicit simultaneous solution method. The process of laboratory-scale hydrate decomposition by depressurization is simulated. For different surrounding temperatures and outlet pressures, time evolutions of gas and water generations during hydrate dissociation are evaluated, and variations of temperature, pressure, and multiphase fluid flow conditions are analyzed. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, high surrounding temperature and low outlet valve pressure may increase the rate of hydrate dissociation with insignificant impact on final cumulative gas volume.展开更多
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot...The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.展开更多
Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of tod...Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.展开更多
Abstract A transonic, high Reynolds number natural laminar flow airfoil is designed and studied. The γ-θ transition model is combined with the shear stress transport (SST) k-w turbulence model to predict the trans...Abstract A transonic, high Reynolds number natural laminar flow airfoil is designed and studied. The γ-θ transition model is combined with the shear stress transport (SST) k-w turbulence model to predict the transition region for a laminar-turbulent boundary layer. The non-uniform free-form deformation (NFFD) method based on the non-uniform rational B-spline (NURBS) basis function is introduced to the airfoil parameterization. The non-dominated sorting genetic algorithm-II (NSGA-II) is used as the search algo- rithm, and the surrogate model based on the Kriging models is introduced to improve the efficiency of the optimization system. The optimization system is set up based on the above technologies, and the robust design about the uncertainty of the Mach number is carried out for NASA0412 airfoil. The optimized airfoil is analyzed and compared with the original airfoil. The results show that natural laminar flow can be achieved on a supercritical airfoil to improve the aerodynamic characteristic of airfoils.展开更多
Based on the ETM remote sensing images of Guangzhou City in 2014, the spatial distribution results o f three environmental factors including vegetation coverage(NDVI), soil index(vegetation index of bare soil) and sl ...Based on the ETM remote sensing images of Guangzhou City in 2014, the spatial distribution results o f three environmental factors including vegetation coverage(NDVI), soil index(vegetation index of bare soil) and sl ope were obtained. By using comprehensive index method, the normalized environmental factors were weighted and superimposed, and the fi nal evaluation results of ecological environment in Guangzhou City were obtained. The results showed that overall situation of natural ecological environment in Guangzhou was not optimistic, that is, the area of land with bad, moderate, good and superior environment accounted for 59.70%, 35.79%, 4.50% and around 0.01% of total area of land in Guangzhou City respectively. Ecological environment was generally poor in the central urban districts in the south of Guangzhou City, while it was relatively better in the north and northeast. Attaching importance to the constr uction of greenbelts and greenways is an effective way to improve regional environmental quality and natural ecological e nvironment level.展开更多
Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%sinc...Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%since the first evaluation in 1973.Geographic and geophysical conditions of the South China Sea(SCS)are favorable for the formation of NGH,which has been proved by drilling results up to date.The recoverability of the NGH in the SCS has been confirmed by the production tests using both vertical and horizontal wells.Since 2001,35 estimates of NGH resources in the SCS have been made,with relatively stable results varying between 600 and 900×109 ton oil equivalent.In these estimations,the volumetric method was commonly adopted,but the geological conditions,the migration-accumulation mechanisms of NGH,and the practical recoverability were not considered.These estimates cannot be regarded as evaluated resources according to the international resource evaluation standards,but are at most about prospective gas content of NGH,thus inefficient for guiding explorations and developments.To solve these problems,this study divides the past NGH surveys in the SCS into seven stages,acquires key geological parameters of every stage based on previous studies and analogy with other areas,evaluates the NGH resources of these seven stages by using the volumetric method,then adopts a new trend-analysis method to simulate the downward trend of these estimates,and finally predicts the NGH resources in the SCS at 2025 and 2030.The downward trend is because of the continuous improvement of NGH understanding over time,which is consistent with the trend of global NGH estimates.At the present stage(from 2019 to 2021),the average technically recoverable resource(ATRR)is 7.0×10^(12)m^(3),and the estimates of 2025 and 2030 ATRR are 6.46×10^(12)m^(3) and 4.01×10^(12)m^(3)respectively,with a difference of less than 40%.Therefore,it can be inferred that the ATRR of NGH in the SCS is between 4.0 and 6.5×10^(12)m^(3),with an average of 5.25×10^(12)m^(3).展开更多
Naturally fractured reservoirs make important contributions to global oil and gas reserves and production.The modeling and simulation of naturally fractured reservoirs are different from conventional reservoirs as the...Naturally fractured reservoirs make important contributions to global oil and gas reserves and production.The modeling and simulation of naturally fractured reservoirs are different from conventional reservoirs as the existence of natural fractures.To address the development optimization problem of naturally fractured reservoirs,we propose an optimization workflow by coupling the optimization methods with the embedded discrete fracture model(EDFM).Firstly,the effective and superior performance of the workflow is verified based on the conceptual model.The stochastic simplex approximate gradient(StoSAG)algorithm,the ensemble optimization(EnOpt)algorithm,and the particle swarm optimization(PSO)algorithm are implemented for the production optimization of naturally fractured reservoirs based on the improved versions of the Egg model and the PUNQ-S3 model.The results of the two cases demonstrate the effectiveness of this optimization workflow by finding the optimal well controls which yield the maximum net present value(NPV).Compared to the initial well control guess,the final NPV obtained from the production optimization of fractured reservoirs based on all three optimization algorithms is significantly enhanced.Compared with the optimization results of the PSO algorithm,StoSAG and EnOpt have significant advantages in terms of final NPV and computational efficiency.The results also show that fractures have a significant impact on reservoir production.The economic efficiency of fractured reservoir development can be significantly improved by the optimization workflow.展开更多
Tight oil resources are abundant in the world.It is very important to strengthen the research on the development theory and technology of tight oil reservoirs for ensuring national energy security.Natural gas huff-n-p...Tight oil resources are abundant in the world.It is very important to strengthen the research on the development theory and technology of tight oil reservoirs for ensuring national energy security.Natural gas huff-n-puff can effectively improve the oil recovery of tight oil reservoirs.However,the pore-scale oil production characteristics and the mechanisms of natural gas huff-n-puff in matrix-fracture cores are poorly understood.The influence degree of important factors on oil recovery is not clear and the interactions between factors are rarely considered.In this paper,the oil production characteristics and mechanisms of natural gas huff-n-puff in tight cores with different fracture lengths were quantitatively analyzed by combining nuclear magnetic resonance(NMR)with numerical simulation technology.The influencing factors and their interactions were evaluated by the response surface method(RSM).The results show that tight cores mainly consist of medium pores(0.1–1μm)and small pores(0.01–0.1μm).The fracture mainly increases the proportion of macro-pores(1–10μm)and medium pores.In the natural gas huff-n-puff process,crude oil from macro-pores(1–10μm)and medium pores is mainly developed,and the contribution percentage of crude oil in medium pores to oil recovery is the largest,up to 98.28%.The position of gas–oil contact(GOC)moves deeper as the number of huff-n-puff cycles increases.The contents of CH_(4) and CO_(2) in the oil phase remain at a high level within the GOC,while between the GOC and the component sweep front,the contents of CH_(4) and CO_(2) in the oil phase decrease with the increase in dimensionless distance.The gas component sweep volume is increasing with the increase in fracture length.Moreover,the injected natural gas mainly extracts C_(3)–C_(10) components from crude oil.The reduction law of crude oil viscosity is consistent with the migration laws of CH_(4) components along the path.Compared with soaking time and gas diffusion coefficient,the injection pressure is the most significant factor underlying the recovery of natural gas huff-n-puff in tight cores.Besides the influence of single-factor,the interaction effects of gas injection pressure and diffusion also should be considered to determine the huff-n-puff parameters in the field implementation of natural gas huff-n-puff in tight reservoirs after fracturing.展开更多
基金supported by the National Natural Science Foundation of China(Grants Nos.51978150 and 52050410334)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grants No.SJCX23_0069)the Fundamental Research Funds for the Central Universities.
文摘Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.
基金Project supported by the National Natural Science Foundation of China(Nos.12272353 and 12002316)the Key Scientific and Technological Research Projects in Henan Province of China(No.232102211075)。
文摘Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.
基金support from the National Natural Science Foundations of China(Nos.11972267 and 11802214)the Open Foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics and the Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.
基金supported through the Annual Funding Track by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.AN000675].
文摘In this paper,natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function(RBF).The nanofluids used were Cu-water or Al_(2)O_(3)-water mixture with nanoparticle volume fractions range of 0≤φ≤0.2.A system of continuity,momentum,and energy partial differential equations was used in modeling the flow and temperature behavior of the fluids.Partial derivatives in the governing equations were approximated using the RBF method.The artificial compressibility model was implemented to overcome the pressure velocity coupling problem that occurs in such equations.Themain goal of this work was to present a simple and efficient method to deal with complex geometries for a variety of problem conditions.To assess the accuracy of the proposed method,several test cases of natural convection in square and triangular cavities were selected.For Rayleigh numbers ranging from 103 to 105,a validation test of natural convection of Cu-water in a square cavity was used.The numerical investigation was then extended to Rayleigh number 106,as well as Al_(2)O_(3)-water nanofluid with a volume fraction range of 0≤φ≤0.2.In a second investigation,the same nanofluids were used in a triangular cavitywith varying volume fractions to test the proposed meshless approach on non-rectangular geometries.The numerical results appear to be in agreement with those from earlier investigations.Furthermore,the suggested meshless method was found to be stable and accurate,demonstrating that it may be a viable alternative for solving natural heat transfer equations of nanofluids in enclosures with irregular geometries.
基金Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through theResearch Group Project underGrant Number(RGP.2/610/45)funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R102)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological factors is investigated.The analysis combines a traditional numerical approach with machine learning techniques.Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods.The artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error clustering.Parametric analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and micro-rotation.The Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)increase.Variations in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt numbers.Higher(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number distribution.Increased(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt numbers.These findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer properties.By combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering.
基金National Natural Science Foundation of China,No.81860519.
文摘BACKGROUND Robotic resection using the natural orifice specimen extraction surgery I-type F method(R-NOSES I-F)is a novel minimally invasive surgical strategy for the treatment of lower rectal cancer.However,the current literature on this method is limited to case reports,and further investigation into its safety and feasibility is warranted.AIM To evaluate the safety and feasibility of R-NOSES I-F for the treatment of low rectal cancer.METHODS From September 2018 to February 2022,206 patients diagnosed with low rectal cancer at First Affiliated Hospital of Nanchang University were included in this retrospective analysis.Of these patients,22 underwent R-NOSES I-F surgery(RNOSES I-F group)and 76 underwent conventional robotic-assisted low rectal cancer resection(RLRC group).Clinicopathological data of all patients were collected and analyzed.Postoperative outcomes and prognoses were compared between the two groups.Statistical analysis was performed using SPSS software.RESULTS Patients in the R-NOSES I-F group had a significantly lower visual analog score for pain on postoperative day 1(1.7±0.7 vs 2.2±0.6,P=0.003)and shorter postoperative anal venting time(2.7±0.6 vs 3.5±0.7,P<0.001)than those in the RLRC group.There were no significant differences between the two groups in terms of sex,age,body mass index,tumor size,TNM stage,operative time,intrao-perative bleeding,postoperative complications,or inflammatory response(P>0.05).Postoperative anal and urinary functions,as assessed by Wexner,low anterior resection syndrome,and International Prostate Symptom Scale scores,were similar in both groups(P>0.05).Long-term follow-up revealed no significant differences in the rates of local recurrence and distant metastasis between the two groups(P>0.05).CONCLUSION R-NOSES I-F is a safe and effective minimally invasive procedure for the treatment of lower rectal cancer.It improves pain relief,promotes gastrointestinal function recovery,and helps avoid incision-related complications.
文摘This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.
文摘In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.
基金supported by Henan Provincial Department of Education(No.21B350001)Zhengzhou science and technology department(No.ZZSZX202109 and ZZSZX202108).
文摘Although solar exposure is necessary for human health,phototoxicology induced by excessive UVB and UVA radiation,which involves sunburns,skin aging and even tu-morigenesis,has been widely researched.Sunscreen is one of the most important ways to protect skin from UV phototoxic damage.As well as inorganic and organic UV filters,some natural products or plant extracts with aromatic rings in their structures,such as flavonoids or polyphenols,can absorb UV to reduce sunburn,acting as a natu-ral UV filter;they also show antioxidant or/and anti-inflammatory activity.This could explain why,although there are no officially approval natural commercial sun-filters,more and more commercial sunscreen products containing plant extracts are avail-able on the market.Here we summarize articles focusing on natural UV filters from plant published in the last 6 years,selecting the most significant data in order to better understand the photoprotective activity of natural products and extracts from plants,including their major constituents and main biological effects,methods for evaluating UV radiation resistance,anti-UV radiation experimental models and anti-UV radiation mechanisms.
基金Supported by the National Natural Science Foundation of China(52192622,52204005,U20A20265)Sichuan Outstanding Young Scientific and Technological Talents Project(2022JDJQ0007).
文摘In this paper,a viscoelasticity-plastic damage constitutive equation for naturally fractured shale is deduced,coupling nonlinear tensile-shear mixed fracture mode.Dynamic perforation-erosion on fluid re-distribution among multi-clusters are considered as well.DFN-FEM(discrete fracture network combined with finite element method)was developed to simulate the multi-cluster complex fractures propagation within temporary plugging fracturing(TPF).Numerical results are matched with field injection and micro-seismic monitoring data.Based on geomechanical characteristics of Weiyuan deep shale gas reservoir in Sichuan Basin,SW China,a multi-cluster complex fractures propagation model is built for TPF.To study complex fractures propagation and the permeability-enhanced region evolution,intersecting and competition mechanisms between the fractures before and after TPF treatment are revealed.Simulation results show that:fracture from middle cluster is restricted by the fractures from side-clusters,and side-clusters plugging is benefit for multi fractures propagation in uniformity;optimized TPF timing should be delayed within a higher density or strike of natural fractures;Within a reservoir-featured natural fractures distribution,optimized TPF timing for most clustered method is 2/3 of total fluid injection time as the optimal plugging time under different clustering modes.
基金The work is financially supported by the National Natural Science Foundations of China (No.50476083).
文摘An improved shooting method was presented for solving the natural convention boundary layer equations, with a coupling of the velocity field to the temperature field. The numerical results are consistent with the approximate solution obtained by former researchers.
基金supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2006AA09A209-5)the National Natural Science Foundation of China (Key Program,Grant No.50736001)the Major Research Project of Ministry of Education of China (Grant No.306005)
文摘Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposition, and multiphase flow. These equations are discretized based on the finite difference method and are solved with the fully implicit simultaneous solution method. The process of laboratory-scale hydrate decomposition by depressurization is simulated. For different surrounding temperatures and outlet pressures, time evolutions of gas and water generations during hydrate dissociation are evaluated, and variations of temperature, pressure, and multiphase fluid flow conditions are analyzed. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, high surrounding temperature and low outlet valve pressure may increase the rate of hydrate dissociation with insignificant impact on final cumulative gas volume.
基金Project supported by the National Natural Science Foundation of China (Grant No.10472060)
文摘The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.
基金supported by a major consulting project of"South China Sea Oil and Gas Comprehensive Development Strategy Research"led by Academician Gao Deli and the Faculty of Chinese Academy of SciencesCounsulting Project of Chinese Academy of Science(Approval Number:2019-ZW11-Z-035)+1 种基金National Key Basic Research and Development Program(973)(Nos:2006CB202300,2011CB201100)China High-tech R&D Program(863)(2013AA092600)。
文摘Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.
文摘Abstract A transonic, high Reynolds number natural laminar flow airfoil is designed and studied. The γ-θ transition model is combined with the shear stress transport (SST) k-w turbulence model to predict the transition region for a laminar-turbulent boundary layer. The non-uniform free-form deformation (NFFD) method based on the non-uniform rational B-spline (NURBS) basis function is introduced to the airfoil parameterization. The non-dominated sorting genetic algorithm-II (NSGA-II) is used as the search algo- rithm, and the surrogate model based on the Kriging models is introduced to improve the efficiency of the optimization system. The optimization system is set up based on the above technologies, and the robust design about the uncertainty of the Mach number is carried out for NASA0412 airfoil. The optimized airfoil is analyzed and compared with the original airfoil. The results show that natural laminar flow can be achieved on a supercritical airfoil to improve the aerodynamic characteristic of airfoils.
基金Sponsored by National Natural Science Foundation of China(41271060)
文摘Based on the ETM remote sensing images of Guangzhou City in 2014, the spatial distribution results o f three environmental factors including vegetation coverage(NDVI), soil index(vegetation index of bare soil) and sl ope were obtained. By using comprehensive index method, the normalized environmental factors were weighted and superimposed, and the fi nal evaluation results of ecological environment in Guangzhou City were obtained. The results showed that overall situation of natural ecological environment in Guangzhou was not optimistic, that is, the area of land with bad, moderate, good and superior environment accounted for 59.70%, 35.79%, 4.50% and around 0.01% of total area of land in Guangzhou City respectively. Ecological environment was generally poor in the central urban districts in the south of Guangzhou City, while it was relatively better in the north and northeast. Attaching importance to the constr uction of greenbelts and greenways is an effective way to improve regional environmental quality and natural ecological e nvironment level.
基金financially supported by the CAS consultation project“South China Sea Oil and Gas Comprehensive Development Strategy”(2019-ZW11-Z-035)the National Basic Research Program of China(973 Program)(2006CB202300,2011CB201100)the National High-Tech R&D Program of China(863 Program)(2013AA092600)。
文摘Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%since the first evaluation in 1973.Geographic and geophysical conditions of the South China Sea(SCS)are favorable for the formation of NGH,which has been proved by drilling results up to date.The recoverability of the NGH in the SCS has been confirmed by the production tests using both vertical and horizontal wells.Since 2001,35 estimates of NGH resources in the SCS have been made,with relatively stable results varying between 600 and 900×109 ton oil equivalent.In these estimations,the volumetric method was commonly adopted,but the geological conditions,the migration-accumulation mechanisms of NGH,and the practical recoverability were not considered.These estimates cannot be regarded as evaluated resources according to the international resource evaluation standards,but are at most about prospective gas content of NGH,thus inefficient for guiding explorations and developments.To solve these problems,this study divides the past NGH surveys in the SCS into seven stages,acquires key geological parameters of every stage based on previous studies and analogy with other areas,evaluates the NGH resources of these seven stages by using the volumetric method,then adopts a new trend-analysis method to simulate the downward trend of these estimates,and finally predicts the NGH resources in the SCS at 2025 and 2030.The downward trend is because of the continuous improvement of NGH understanding over time,which is consistent with the trend of global NGH estimates.At the present stage(from 2019 to 2021),the average technically recoverable resource(ATRR)is 7.0×10^(12)m^(3),and the estimates of 2025 and 2030 ATRR are 6.46×10^(12)m^(3) and 4.01×10^(12)m^(3)respectively,with a difference of less than 40%.Therefore,it can be inferred that the ATRR of NGH in the SCS is between 4.0 and 6.5×10^(12)m^(3),with an average of 5.25×10^(12)m^(3).
基金This study was supported by the National Natural Science Foundation of China(51904323,52174052).
文摘Naturally fractured reservoirs make important contributions to global oil and gas reserves and production.The modeling and simulation of naturally fractured reservoirs are different from conventional reservoirs as the existence of natural fractures.To address the development optimization problem of naturally fractured reservoirs,we propose an optimization workflow by coupling the optimization methods with the embedded discrete fracture model(EDFM).Firstly,the effective and superior performance of the workflow is verified based on the conceptual model.The stochastic simplex approximate gradient(StoSAG)algorithm,the ensemble optimization(EnOpt)algorithm,and the particle swarm optimization(PSO)algorithm are implemented for the production optimization of naturally fractured reservoirs based on the improved versions of the Egg model and the PUNQ-S3 model.The results of the two cases demonstrate the effectiveness of this optimization workflow by finding the optimal well controls which yield the maximum net present value(NPV).Compared to the initial well control guess,the final NPV obtained from the production optimization of fractured reservoirs based on all three optimization algorithms is significantly enhanced.Compared with the optimization results of the PSO algorithm,StoSAG and EnOpt have significant advantages in terms of final NPV and computational efficiency.The results also show that fractures have a significant impact on reservoir production.The economic efficiency of fractured reservoir development can be significantly improved by the optimization workflow.
基金supported by the National Natural Science Foundation of China(Grant No.U22B6004,51974341,51904324)the Fundamental Research Funds for the Central Universities(No.20CX06070A)the Science and Technology Support Plan for Youth Innovation of University in Shandong Province(Grant No.2019KJH002).
文摘Tight oil resources are abundant in the world.It is very important to strengthen the research on the development theory and technology of tight oil reservoirs for ensuring national energy security.Natural gas huff-n-puff can effectively improve the oil recovery of tight oil reservoirs.However,the pore-scale oil production characteristics and the mechanisms of natural gas huff-n-puff in matrix-fracture cores are poorly understood.The influence degree of important factors on oil recovery is not clear and the interactions between factors are rarely considered.In this paper,the oil production characteristics and mechanisms of natural gas huff-n-puff in tight cores with different fracture lengths were quantitatively analyzed by combining nuclear magnetic resonance(NMR)with numerical simulation technology.The influencing factors and their interactions were evaluated by the response surface method(RSM).The results show that tight cores mainly consist of medium pores(0.1–1μm)and small pores(0.01–0.1μm).The fracture mainly increases the proportion of macro-pores(1–10μm)and medium pores.In the natural gas huff-n-puff process,crude oil from macro-pores(1–10μm)and medium pores is mainly developed,and the contribution percentage of crude oil in medium pores to oil recovery is the largest,up to 98.28%.The position of gas–oil contact(GOC)moves deeper as the number of huff-n-puff cycles increases.The contents of CH_(4) and CO_(2) in the oil phase remain at a high level within the GOC,while between the GOC and the component sweep front,the contents of CH_(4) and CO_(2) in the oil phase decrease with the increase in dimensionless distance.The gas component sweep volume is increasing with the increase in fracture length.Moreover,the injected natural gas mainly extracts C_(3)–C_(10) components from crude oil.The reduction law of crude oil viscosity is consistent with the migration laws of CH_(4) components along the path.Compared with soaking time and gas diffusion coefficient,the injection pressure is the most significant factor underlying the recovery of natural gas huff-n-puff in tight cores.Besides the influence of single-factor,the interaction effects of gas injection pressure and diffusion also should be considered to determine the huff-n-puff parameters in the field implementation of natural gas huff-n-puff in tight reservoirs after fracturing.