Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values o...Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.展开更多
In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris v...In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris var. mongolica trees from two provenances (natural forests and plantations). The results indicated that natural tree needles had lower N, P and C concentrations, and higher K concentrations than those of plantation tree needles. For plantation tree needles, ratios of N: P, P. K and N: K increased with tree age before 45 years old; but they were not clear for the natural tree needles. Compared with the conclusions reported on Pinus spp., we found that the foliar N and P concentrations were in the optimal range for both natural and plantation tree needles. This result suggested that N or P might not be the absolute limit factors in plant nutrient for P sylvestris var. mongolica on sandy land. However, foliar K concentrations in both natural and plantation tree needles were much lower than those reported on Pinus spp. (〉4.80 g kg-1).The N: P ratio of natural needles was in the adequate ranges, but N: P ratio of plantation needles was out of the adequate ranges. These results indicated that there was a better balanced nutrition status in the natural forest than in the plantations. If only considering the foliar nutrient concentrations of P sylvestris var. mongolica from different provenances, it might be concluded that the degradation phenomenon of P. sylvestris var. mongolica plantations was not induced by nutrition deficiency of absolute nutrients of N and P, but might be induced by other mineral nutrients or by the effectiveness of N and P nutrients. The unbalanced nutrition status and relatively quick decomposition of needles in the plantations might also contribute to the degradation.展开更多
This paper principally focuses on land use dynamics,urban expansion and underlying driving forces in the Natural Wetland Distribution Area(NWDA)of Fuzhou City in the southeastern China.Based on time series Landsat TM/...This paper principally focuses on land use dynamics,urban expansion and underlying driving forces in the Natural Wetland Distribution Area(NWDA)of Fuzhou City in the southeastern China.Based on time series Landsat TM/ETM+imageries and historical data,relationships between urban land expansion and its influencing factors from 1989 to 2009 were analyzed by using an integrated approach of remote sensing(RS)and geographic information system(GIS)techniques.The results showed that built-up land increased from 151.16 km2in 1989 to 383.76 km 2in 2009. Approximately 64.25%of the newly emerging built-up land was converted from cropland(29.47%),forest and shrub (25.78%),water(3.73%),wetland(4.61%),and bare land(0.66%)during 1989 and 2009.With a remarkable decrease in cropland,the proportion of non-agricultural population increased by 23.6%.Moreover,rapid development of infrastructures,facilities,industrial parks,and urban and rural settlements along the Minjiang River resulted in the eastward and southward expansion of built-up land.Additionally,the growth pattern of built-up land in the NWDA is highly correlated with socio-economic factors,including the gross domestic product(GDP),GDP per capita,and structure of industry.As a result,the observed environmental degradation such as loss of cropland and wetland due to heavy pressure of rapid urbanization have greatly impaired the carrying capacity of city.Thus,in addition to scientific and rational policies towards minimizing the adverse effects of urbanization,coordination between the administrative agencies should be urgently strengthened to balance the conflicts between urban development and ecological conservation to make sure the sustainable land use.展开更多
This paper focuses on participatory testing of decision making tools (DMTs) at village level to assist in development of land use plans (LUPs) for sustainable land management (SLM) in Kilimanjaro Region, Tanzania. Dat...This paper focuses on participatory testing of decision making tools (DMTs) at village level to assist in development of land use plans (LUPs) for sustainable land management (SLM) in Kilimanjaro Region, Tanzania. Data were collected using conditional surveys through key informant interviews with the project’s district stakeholders in each district, focused group discussions with selected villagers and participatory mapping of natural resources. Soil health, land degradation, carbon stock, and hydrological conditions were assessed in the seven pilot villages in all seven districts using DMTs as part of testing and validation. Results indicated soils of poor to medium health, and land degradation as portrayed by gullies and wind erosion in lowlands and better in uplands. Carbon and forest disturbance status could not be assessed using one-year data but hydrological analysis revealed that water resources were relatively good in uplands and poor in the lowlands. Challenges with regard to land use include increased gully erosion, decreased stream flow, reduced vegetation cover due to shifting from coffee with tree sheds to annual crops farming, cultivation near water sources, and overgrazing. Empowering the community with decision making tools at village level is essential to ensure that village land uses are planned in a participatory manner for sustainable land and natural resources management in Kilimanjaro and other regions in Tanzania.展开更多
Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on grou...Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on groundwater recharge in arid regions,and quantitative assessment of the impact is key to sustainable groundwater resources management.In this study,the changes of groundwater recharge after the conversion of natural lands to croplands were investigated and compared in inland and arid region,i.e.,the northern slope of the Tianshan Mountain.Stable isotopes suggest that soil water in topsoil(<2 m)has experienced stronger evaporation under natural lands than croplands,and then moves downward as a piston flow.Recharge was estimated by the tracer-based mass balance method,i.e.,chloride and sulfate.Recharge rates under natural conditions estimated by the chloride mass balance(CMB)method were estimated to be 0.07 mm/a in deserts and 0.4 mm/a in oases.In contrast,the estimated groundwater recharge ranged from 61.2 mm/a to 44.8 mm/a in croplands,indicating that groundwater recharge would increase significantly after land changes from natural lands to irrigated croplands in arid regions.Recharge estimated by the sulfate mass balance method is consistent with that from the CMB method,indicating that sulfate is also a good tracer capable of estimating groundwater recharge.展开更多
This study aims to analyze temporal changes in land use and land cover change (LUCC) as well as identify areas for natural regeneration and potential areas for forest restoration in the Huasteca region for the period ...This study aims to analyze temporal changes in land use and land cover change (LUCC) as well as identify areas for natural regeneration and potential areas for forest restoration in the Huasteca region for the period from 1976 to 2007. Changes were quantified in numbers and, additionally, cartography was used to identify and map the main affected areas. Different models based on Geographic Information Systems (GIS) demonstrated that LUCC have occurred on an area of 11718.82 km2, representing 17.84% of the region’s surface. Agriculture and the growth of pasture could be identified as the main human-induced activities that have led to landscape modification. In addition, forest cover is affected by a deforestation rate which is higher than the national average. Further important changes include a change from natural land cover to non-original land cover, affecting an area of 4911.88 km2 in the period from 1976-1993, and an area of 1892.5 km2 in the period from 1993-2002. Smaller changes could be observed for the period from 1993-2002 with an affected area of 1029.78 km2. At the same time, a natural regeneration from nonoriginal to original land cover took place from 1976-1993 on an area of 1318.68 km2, and also on an area of 974.18 km2 between 1993 an 2002. The surface that underwent a natural regeneration of forest cover made up 1932.07 km2. At the same time, an area of 5739.29 km2 for potential forest restoration was identified. Drawing on GIS methods and techniques, the development of thematic maps for land use, land use and land cover changes for the years of analysis (1976-1993-2002-2007) proved to be very adequate for the evaluation and analysis of the land cover and land use change, in particular with regard to the decrease of natural vegetation cover.展开更多
The Songnen Plain lying in the central part of the Northeast China Plain covers an area of about 170 000 km2. There are vast patches of saline land, which are still in the process of enlargement. The spread of saline ...The Songnen Plain lying in the central part of the Northeast China Plain covers an area of about 170 000 km2. There are vast patches of saline land, which are still in the process of enlargement. The spread of saline land has already caused the worsening of ecoenvironment and hindered agricultural development in the region. The paper analyses background factors of natural environment that caused the spread of saline land according to the information of Landsat TM images. The result shows that among the three kinds of lakes the fault lake is the background factor of natural environment that causes the spread of saline land under arid conditions. Its lakebeach meadows could not recover from the excessive utilization in farming and stockraising. The proposed countermeasures to prevent and control the spread of saline land serve as biological steps or water conservancy facilities to protect the lakebeach meadows of the fault lakes from being artificial excessively utilized.展开更多
Forest stands in the semi-arid environment of northern Mongolia have an essential role in controlling ongoing desertification in the surrounding landscape.Over the last decade,the total forest area has decreased drama...Forest stands in the semi-arid environment of northern Mongolia have an essential role in controlling ongoing desertification in the surrounding landscape.Over the last decade,the total forest area has decreased dramatically.The aim of this study was to evaluate the potential of natural regeneration as an essential element for ensuring sustainability of these forests.Based on field measurements from 120 plots in six sites,our assessment tool revealed five qualitative categories of forest regeneration,allowing us to assess impacts of both grazing and environmental conditions on the regeneration process.Grazing is a crucial factor and adversely affects regeneration.For sites with relatively low grazing intensity,low soil moisture levels represent the main reason for reduced regeneration.The approach to classification proposed in this study allows for the identification and interpretation of stand conditions where natural regeneration has failed.This study provides an important foundation to inform decisionmaking related to land protection and restoration actions.Our findings could be used in comparative studies and,importantly,may aid further mapping of Mongolian forests.展开更多
Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study ...Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.展开更多
Using biomass from dedicated crops for energy production and natural vegetation regrowth are key elements in future climate change mitigation scenarios.However,there are still uncertainties about the mitigation potent...Using biomass from dedicated crops for energy production and natural vegetation regrowth are key elements in future climate change mitigation scenarios.However,there are still uncertainties about the mitigation potentials that can be achieved by the different land-based systems and how they perform relative to each other.In this study,we use harmonized future land use datasets to identify global land areas dedicated to second generation bioenergy crop production in 2050 under different climate scenarios.We then assess the global climate change mitigation potentials of using biomass for producing bioethanol with(BECCS)or without carbon capture and storage,biochar,or a synthetic fuel(e-methanol).For the latter,the electricity required to produce hydrogen for e-methanol synthesis is sourced from either wind power or the projected average electricity mix in 2050.Mitigation potential from natural regrowth on the identified land is also quantified.For all the cases,we modelled emissions of greenhouse gases from the life-cycle stages and use parameterized models to estimate local biomass growth rates.The identified land areas range from 1.95 to 13.8 million hectares and can provide from 30 to 178 mega ton(Mt)dry biomass annually from dedicated crops.Climate change mitigation potentials range from 11 to 257 MtCO_(2)-eq.yr^(−1),depending on technological option and land availability.The largest mitigation is delivered by BECCS,but e-methanol can achieve similar findings when hydrogen is sourced from wind power.If hydrogen is produced from grid electricity,e-methanol can result in net positive emissions.E-methanol can also deliver more final energy than bioethanol(4.04 vs.1.27 EJ yr^(−1)).Natural vegetation regrowth can generally achieve higher mitigation than bioethanol,but less than biochar.An optimal combination of BECCS and natural vegetation regrowth can achieve a larger mitigation,up to 281 MtCO_(2)-eq.yr^(−1),indicating that integrated solutions can help to achieve successful land management strategies for climate change mitigation.展开更多
Motivated by the increasing popularity and advocating for integrated reporting by companies on their operations,the aim of this paper is to determine the disclosure levels on land by mining houses in South Africa in t...Motivated by the increasing popularity and advocating for integrated reporting by companies on their operations,the aim of this paper is to determine the disclosure levels on land by mining houses in South Africa in their integrated reports.Developing countries,such as South Africa should ensure sustainability of their natural resources in their endeavour of growing their economies.The mining sector in South Africa is a huge contributor to the economy,but also has a significant impact on land conservation.The complexity of mining activities and impacts thereof make it challenging for organisations to disclose information on land.This paper is descriptive by design;it contains a literature review,followed by a content analysis of the mining houses integrated reports by using a checklist.The checklist was based on recommendations by the Global Reporting Initiative(GRI)guidelines as to what the content of the integrated report on land should be.Fourteen mining houses operating in South Africa and registered on the Johannesburg Stock Exchange(JSE)were identified and analysed for this study.The findings of the paper display low levels of overall disclosure on land by the South African mining companies.However,there were high levels of disclosure for EN11,EN12,and MM1 sector-specific supplement in the integrated reports.Low levels of disclosure by the mining companies were evident in MM2 the sector-specific recommendations as well as the physical and monetary information related to MM2.展开更多
Driving forces on the landscape require regional management and/or local actions, together with other external factors. To operationalize this approach, this paper carried out a comparative analysis of the naturalness...Driving forces on the landscape require regional management and/or local actions, together with other external factors. To operationalize this approach, this paper carried out a comparative analysis of the naturalness dynamics of the Jacaré-Guaçu and Jacaré-Pepira watershed, based on land use/cover changes and a structural indicator of the landscape, over the 10-year (2004-2014), as support opportunities for improving its environmental planning and management. Land use/cover dynamics were obtained based on screen digitizing of LandSat imagery, using polygon manual digitalization. Naturalness scenarios of the watersheds, over the 10-year (2004-2014), were obtained based on Urbanity Indicator, which evaluates how much the natural landscapes are dominated by altered systems. The total area of watersheds showed a predominantly scenario, induced by anthropogenic agricultural and non-agricultural expansion areas, mainly by conversion of other land use/cover types in sugarcane cultivation. Despite the increase in natural vegetation areas, over the 10-year (2004-2014), Jacaré-Guaçu and Jacaré-Pepira watersheds are far from a sustainable condition. However Jacaré-Guaçu watershed presents a scenario of more committed naturalness due to the increase in Urbanity Index values ≥ 0.7. The historical process of land use occupation for agricultural production remains the main driving force of naturalness changes, occupying more than 70% of the total area of watersheds. These results have significant implications for fast urbanizing municipalities in providing key information about long term land use impact on the watershed structure and function, making it possible for policy makers, scientists and stakeholders to identify land uses which are hindered or enhanced under various scenarios of land use change over the time, and making it possible to explore the trade-offs between them to improve watershed management.展开更多
Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation techniqu...Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation technique by the Ministry of Agriculture of China. It replaces the traditional plowshare with spiral drill, and its tilth depth is twice deeper than that by tractor tilthing. It also extends soil nutrient, moisture, oxygen and microorganism, the so-called "Four pools". Soil nutrient, oxygen, microorganism, light and rainfall use ratio is increased by 10%-100%, creating a platform for natural increase of more than 10% of crop yield. Its application to over 20 kinds of crops in 21 provinces has proved that the yield increases 10-30% with quality enhancing 5% and double water retaining capacity but no more input. When the application area of Fenlong could reach 67 million hm2, the amount of fertilizer can be reduced by 40-50 billion kg, saving 120-150 billion Yuan. In this paper, we put forward the strategy of "4+1" (arable, saline-alkali soil, grasslands, Sponge City + rivers) green development in China, and deepened the Fenlong cultivated tilled layer from 16.5 cm to 35 cm for 67 million hm2 arable land, ridged 13.3 million hm2 of saline-alkali soil for 35 cm, and also 35 cm for 67 million hm2 degraded steppe, which could have the following 3 effects: first, the 147 million hm2 of land with Fenlong cultivation could increase loosing soil to 315.491 billion m3, in* creasing by 159.26% for 120 million hm2 of arable land with the average tilled layer of 16.5 cm, which has loosing soil of only 198.1 billion m3, that is, the space of the land increases 1.6 times. Second, every hectare of plowland could store up to 450 m3/hm2 of natural rainfall, and the unused 60 m3 of saline-alkali soil and grasslands could store water of 102 billion m3, showing an increase of over 88.89% for the current plowland storage of 54 billion m3 at now, that is, double the natural rainfall storage capacity. Third, the two multiple increase of natural resources application can bring trillions of resource activation, environmental cleaning, food security, citizens, health, economic, ecological and social benefits, and makes the Chinese nation move forward in green development. Its application in "big scientific research" and "One Belt And One Road" will contribute Chinese strength to the world.展开更多
To identify impact factors on the distribution and characters of natural plants community in reclamation area, with survey data from 67 plant quadrats in July 2009, soil properties data from 216 sampling points in Apr...To identify impact factors on the distribution and characters of natural plants community in reclamation area, with survey data from 67 plant quadrats in July 2009, soil properties data from 216 sampling points in April 2009, and TM (30 m) data in 2006, the composition and characteristics of natural plants community in different time of the Fengxian area in the Changjiang (Yangtze) River estuary were analyzed with two-way indicator species analysis (TWINSPAN), multivariate analysis of variance (MANOVA), detrended canonical correspondence analysis (DCCA) and canonical correspondence analysis (CCA). The results show that: 1) The plant communities in the reclaimed area are mainly mesophytes and helophytic-mesophytic transitional communities, showing a gradient distribution trend with the change in reclamation years. Species richness (MA), species diversity (H) and above-ground biomass also increase with the increase of reclamation years. Nevertheless, they appear to decline slightly in the middle and late reclamation period (> 30 years). 2) With the rise in land use levels, the changes in species richness and species diversity tend to increase at first and then decrease; species dominance (D), however, tends to decline; and above-ground biomass increases slightly. 3) The distribution of the plant community is mainly influenced by the following factors: land use levels (R = 0.55, p < 0.05), soil moisture (R = 0.53, p < 0.05), soil salinity (R = 0.43, p < 0.05) and reclamation time (R = 0.40, p < 0.05).展开更多
Ginseng planting in Northeast China brings economic benefits but affects forest landscape integrity and native ecological processes.In order to quantify the impacts of ginseng planting on the forest landscape,Fusong C...Ginseng planting in Northeast China brings economic benefits but affects forest landscape integrity and native ecological processes.In order to quantify the impacts of ginseng planting on the forest landscape,Fusong County in Jilin Province was selected as a study area.The number and distribution of ginseng fields over different time was quantified based on remote sensing and ground surveys.Grid analysis and multiple regression analysis were used to study the impacts of ginseng planting on the landscape.The results showed that altitudes and slopes of ginseng fields increased and became increasingly scattered and smaller closer to the Changbai Mountain Nature Reserve.Ginseng fields and abandoned fields increased total patches and total area of the local forested landscape,and shared edge lengths between ginseng fields and forests,resulting in continuous fragmentation of the landscape.Although the total area of existing and abandoned ginseng fields accounts for a small fraction of the total landscape,their negative impacts on ecosystem conservation is significant.The local government needs to rationally plan ginseng planting,scientifically implement the restoration of abandoned ginseng lands,and enhance awareness of ginseng farmers to environmental stewardship.Our study has important significance for maintaining the healthy and stable development of the local ginseng industry and for improving the quality of regional ecological environment.展开更多
As a result of socio-economic changes and land abandonment,the main ecological driver of the Carpathian landscape is the progression of the natural forest succession process.Thus,aspects of this process have become wo...As a result of socio-economic changes and land abandonment,the main ecological driver of the Carpathian landscape is the progression of the natural forest succession process.Thus,aspects of this process have become worthy of attention,especially in the context of carbon sequestration and the management of protected areas.Soil processes,especially within the topsoil,are some of the most susceptible to change,due to the accumulation of organic matter during such land-use transformations.The purposes of this study were to investigate the differences in topsoil development using the A Horizon Development Index(ADI)and to study the composition of humic substances and advanced organic matter humification in different land-use areas in selected Carpathian national parks,i.e.Bieszczady,Magura and Pieniny National Parks in southern Poland.Additionally,a goal of this study was to compare the ADI and the spectroscopic coefficients of humic substances as indicators of the degree of humus horizon shaping as well as advanced organic matter humification.In total,ten transects were selected,each consisting of three different land-use areas:semi-natural meadow,successional forest and old-growth forest.Soil colour was determined in fresh and air-dried samples using the Munsell colour chart.In air-dried soil samples p H,soil texture,total organic carbon and total nitrogen were measured.Humic substances were extracted and further characterized by UV-VIS spectroscopy.The ADI confirmed the influence of natural forest succession on soil colour darkening and the development of the uppermost soil layer.Spectroscopic analyses of humic substances showed two different patterns depending on soil depth.In the 0–10 cm layer,natural forest succession reduced the rate of the humification process and decreased the degree of maturity of fulvic acids;in the 10–20 cm layer,it led to an increase in the rate of the humification process and a decrease in the content of humic and fulvic acids at the beginning of the transformation.The comparison of two different indicators of soil development–the ADI and the spectroscopic coefficients of humic substances(Q_(4/6),Q_(2/4),Q_(2/3),Δlog K)–indicated that these indexes are based on different features of soil and cannot be used interchangeably.展开更多
The intensification of anthropic uses (i.e., increase of the hemerobic condition) threatens the remnants of native vegetation due to the reduction of its self-regulation capacity. In this research, the Distance to Nat...The intensification of anthropic uses (i.e., increase of the hemerobic condition) threatens the remnants of native vegetation due to the reduction of its self-regulation capacity. In this research, the Distance to Nature (D2N) index for land use and land cover was applied in the Río Grande de Comitán watershed (Southern Mexico) to answer the following questions: 1) What were the land use dynamics observed in the Rio Grande de Comitán watershed in the trajectory through 1999, 2009 and 2019? 2) Does the subcategorization of the D2N allow one to identify which anthropic uses influence more the territorial expression of the watershed? To answer these questions, we performed a supervised classification of land use and land cover was performed in this watershed, and for the D2N index, the classification was simplified to three-category scale for the subcategorization of the anthropic component. Through Principal Component Analysis (PCA), we identified that agricultural anthropogenic use had the greatest influence on territorial expression. The reported scenario indicates a trend of gradual and continuous reduction of naturalness over the last 20 years. Additionally, the D2N index proved to be a useful tool to demonstrate both the anthropic impact, with the simplified scale, and the component that most influences the territory, by subcategorizing the anthropic scale.展开更多
After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision ...After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision has been made to take part in improving thermal comfort in public spaces by mitigating the impact of the effect of Urban Heat Islands (UHI)<sup>2</sup> in the city of the Belgrade. The basic research aims at achieving the balance between the conflicting impacts when the buildings with their infrastructure and water-green surrounding area are in such correlation that it fulfils acceptable living and heating standards and reduces the use of fossil fuels for cooling the urban areas (buildings). By implementing the remote detection it is possible to analyze and quantify the impact of over-building on the temperature rise in urban areas as well as the disturbance of the heating comfort and the increased demand for additional cooling. Now it is possible to create virtual models that will incorporate this newly-added urban vegetation into urban plans, depending on the evaporation potential that will affect the microclimate of the urban area. Such natural cooling can be measured and adapted and hence aimed at a potential decrease in areas with UHI emissions [2]. Suitable greenery in the summer season can be a useful improvement which concurrently enables and complements several cooling mechanisms—evaporative cooling and evapotranspiration, i.e. natural cooling systems. The remote detection shall establish and map the “healthy” and “unhealthy” greenery zones—that is the vegetation zones with the highest evaporative potential with the “cooling by evaporation” effect and also, by implementing the urban prediction model, it shall propose green infrastructure corridors aimed at a potential decrease in the Urban Heat Island Emission.展开更多
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418), the 100-Young-Researcher-Project of Chinese Academy of Sciences, and by Nature Science Foundation of Liaoning Province (20021006). Acknowledgements We thank Professor Hexin Wang (Dalian University, China), Dr. Professor Zeng Dehui, and the graduate students in research group of Ecology and Management of Secondary Forest (Institute of Applied Ecology, Chinese Academy of Sciences) for their valuable discussion. We are grateful to Mr. Tao Yang (Institute of Applied Ecology, Chinese Academy of Sciences) for his field work. We also thank Dr. Professor Qingcheng Wang (Northeast Forestry University, China), Mr. Menqi Tu and Mr. Yuxiang Ge (Honghuaerji Forestry Bureau, Inner Mongolia, Hulunbeier, China) for providing the convenience during the field investigation.
文摘Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.
基金The research was supported by Innovation Research Project of Chinese Academy of Sciences (KZCX3-SW-418), and the 100 Young Researcher Project of Chinese Academy of Sciences.
文摘In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris var. mongolica trees from two provenances (natural forests and plantations). The results indicated that natural tree needles had lower N, P and C concentrations, and higher K concentrations than those of plantation tree needles. For plantation tree needles, ratios of N: P, P. K and N: K increased with tree age before 45 years old; but they were not clear for the natural tree needles. Compared with the conclusions reported on Pinus spp., we found that the foliar N and P concentrations were in the optimal range for both natural and plantation tree needles. This result suggested that N or P might not be the absolute limit factors in plant nutrient for P sylvestris var. mongolica on sandy land. However, foliar K concentrations in both natural and plantation tree needles were much lower than those reported on Pinus spp. (〉4.80 g kg-1).The N: P ratio of natural needles was in the adequate ranges, but N: P ratio of plantation needles was out of the adequate ranges. These results indicated that there was a better balanced nutrition status in the natural forest than in the plantations. If only considering the foliar nutrient concentrations of P sylvestris var. mongolica from different provenances, it might be concluded that the degradation phenomenon of P. sylvestris var. mongolica plantations was not induced by nutrition deficiency of absolute nutrients of N and P, but might be induced by other mineral nutrients or by the effectiveness of N and P nutrients. The unbalanced nutrition status and relatively quick decomposition of needles in the plantations might also contribute to the degradation.
基金Under the auspices of National Science&Technology Pillar Program during the Eleventh Five-year Plan Period(No.2008BAJ10B1)
文摘This paper principally focuses on land use dynamics,urban expansion and underlying driving forces in the Natural Wetland Distribution Area(NWDA)of Fuzhou City in the southeastern China.Based on time series Landsat TM/ETM+imageries and historical data,relationships between urban land expansion and its influencing factors from 1989 to 2009 were analyzed by using an integrated approach of remote sensing(RS)and geographic information system(GIS)techniques.The results showed that built-up land increased from 151.16 km2in 1989 to 383.76 km 2in 2009. Approximately 64.25%of the newly emerging built-up land was converted from cropland(29.47%),forest and shrub (25.78%),water(3.73%),wetland(4.61%),and bare land(0.66%)during 1989 and 2009.With a remarkable decrease in cropland,the proportion of non-agricultural population increased by 23.6%.Moreover,rapid development of infrastructures,facilities,industrial parks,and urban and rural settlements along the Minjiang River resulted in the eastward and southward expansion of built-up land.Additionally,the growth pattern of built-up land in the NWDA is highly correlated with socio-economic factors,including the gross domestic product(GDP),GDP per capita,and structure of industry.As a result,the observed environmental degradation such as loss of cropland and wetland due to heavy pressure of rapid urbanization have greatly impaired the carrying capacity of city.Thus,in addition to scientific and rational policies towards minimizing the adverse effects of urbanization,coordination between the administrative agencies should be urgently strengthened to balance the conflicts between urban development and ecological conservation to make sure the sustainable land use.
文摘This paper focuses on participatory testing of decision making tools (DMTs) at village level to assist in development of land use plans (LUPs) for sustainable land management (SLM) in Kilimanjaro Region, Tanzania. Data were collected using conditional surveys through key informant interviews with the project’s district stakeholders in each district, focused group discussions with selected villagers and participatory mapping of natural resources. Soil health, land degradation, carbon stock, and hydrological conditions were assessed in the seven pilot villages in all seven districts using DMTs as part of testing and validation. Results indicated soils of poor to medium health, and land degradation as portrayed by gullies and wind erosion in lowlands and better in uplands. Carbon and forest disturbance status could not be assessed using one-year data but hydrological analysis revealed that water resources were relatively good in uplands and poor in the lowlands. Challenges with regard to land use include increased gully erosion, decreased stream flow, reduced vegetation cover due to shifting from coffee with tree sheds to annual crops farming, cultivation near water sources, and overgrazing. Empowering the community with decision making tools at village level is essential to ensure that village land uses are planned in a participatory manner for sustainable land and natural resources management in Kilimanjaro and other regions in Tanzania.
基金The research was funded by Innovation Capability Support Program of Shaanxi(2019TD-040)China National Natural Science Foundation(41472228,41877199)+1 种基金Groundwater and Ecology Security in the North Slope Economic Belt of the Tianshan Mountain(201511047)Key Laboratory of Groundwater and Ecology in Arid Regions of China Geological Survey.
文摘Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on groundwater recharge in arid regions,and quantitative assessment of the impact is key to sustainable groundwater resources management.In this study,the changes of groundwater recharge after the conversion of natural lands to croplands were investigated and compared in inland and arid region,i.e.,the northern slope of the Tianshan Mountain.Stable isotopes suggest that soil water in topsoil(<2 m)has experienced stronger evaporation under natural lands than croplands,and then moves downward as a piston flow.Recharge was estimated by the tracer-based mass balance method,i.e.,chloride and sulfate.Recharge rates under natural conditions estimated by the chloride mass balance(CMB)method were estimated to be 0.07 mm/a in deserts and 0.4 mm/a in oases.In contrast,the estimated groundwater recharge ranged from 61.2 mm/a to 44.8 mm/a in croplands,indicating that groundwater recharge would increase significantly after land changes from natural lands to irrigated croplands in arid regions.Recharge estimated by the sulfate mass balance method is consistent with that from the CMB method,indicating that sulfate is also a good tracer capable of estimating groundwater recharge.
文摘This study aims to analyze temporal changes in land use and land cover change (LUCC) as well as identify areas for natural regeneration and potential areas for forest restoration in the Huasteca region for the period from 1976 to 2007. Changes were quantified in numbers and, additionally, cartography was used to identify and map the main affected areas. Different models based on Geographic Information Systems (GIS) demonstrated that LUCC have occurred on an area of 11718.82 km2, representing 17.84% of the region’s surface. Agriculture and the growth of pasture could be identified as the main human-induced activities that have led to landscape modification. In addition, forest cover is affected by a deforestation rate which is higher than the national average. Further important changes include a change from natural land cover to non-original land cover, affecting an area of 4911.88 km2 in the period from 1976-1993, and an area of 1892.5 km2 in the period from 1993-2002. Smaller changes could be observed for the period from 1993-2002 with an affected area of 1029.78 km2. At the same time, a natural regeneration from nonoriginal to original land cover took place from 1976-1993 on an area of 1318.68 km2, and also on an area of 974.18 km2 between 1993 an 2002. The surface that underwent a natural regeneration of forest cover made up 1932.07 km2. At the same time, an area of 5739.29 km2 for potential forest restoration was identified. Drawing on GIS methods and techniques, the development of thematic maps for land use, land use and land cover changes for the years of analysis (1976-1993-2002-2007) proved to be very adequate for the evaluation and analysis of the land cover and land use change, in particular with regard to the decrease of natural vegetation cover.
文摘The Songnen Plain lying in the central part of the Northeast China Plain covers an area of about 170 000 km2. There are vast patches of saline land, which are still in the process of enlargement. The spread of saline land has already caused the worsening of ecoenvironment and hindered agricultural development in the region. The paper analyses background factors of natural environment that caused the spread of saline land according to the information of Landsat TM images. The result shows that among the three kinds of lakes the fault lake is the background factor of natural environment that causes the spread of saline land under arid conditions. Its lakebeach meadows could not recover from the excessive utilization in farming and stockraising. The proposed countermeasures to prevent and control the spread of saline land serve as biological steps or water conservancy facilities to protect the lakebeach meadows of the fault lakes from being artificial excessively utilized.
基金This work was supported by funding provided by the project CEITEC 2020(LQ1601)project of the Czech Development Agency CzDA-RO-MN-2014-6-31210the Research Fund of the FFWT at Mendel University in Brno(Reg.Number:LDF_PSV_2017008).
文摘Forest stands in the semi-arid environment of northern Mongolia have an essential role in controlling ongoing desertification in the surrounding landscape.Over the last decade,the total forest area has decreased dramatically.The aim of this study was to evaluate the potential of natural regeneration as an essential element for ensuring sustainability of these forests.Based on field measurements from 120 plots in six sites,our assessment tool revealed five qualitative categories of forest regeneration,allowing us to assess impacts of both grazing and environmental conditions on the regeneration process.Grazing is a crucial factor and adversely affects regeneration.For sites with relatively low grazing intensity,low soil moisture levels represent the main reason for reduced regeneration.The approach to classification proposed in this study allows for the identification and interpretation of stand conditions where natural regeneration has failed.This study provides an important foundation to inform decisionmaking related to land protection and restoration actions.Our findings could be used in comparative studies and,importantly,may aid further mapping of Mongolian forests.
文摘Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.
基金X.H.and F.C.thank the support of the Norwegian Research Council through the projects Mitistress(Grant No.286773)BEST(Grant No.288047)+1 种基金W.Z.of the National Natural Science Foundation of China(Grant No.42271292)State Key Laboratory of Earth Surface Processes and Resource Ecology(Grant No.2022-ZD-08).
文摘Using biomass from dedicated crops for energy production and natural vegetation regrowth are key elements in future climate change mitigation scenarios.However,there are still uncertainties about the mitigation potentials that can be achieved by the different land-based systems and how they perform relative to each other.In this study,we use harmonized future land use datasets to identify global land areas dedicated to second generation bioenergy crop production in 2050 under different climate scenarios.We then assess the global climate change mitigation potentials of using biomass for producing bioethanol with(BECCS)or without carbon capture and storage,biochar,or a synthetic fuel(e-methanol).For the latter,the electricity required to produce hydrogen for e-methanol synthesis is sourced from either wind power or the projected average electricity mix in 2050.Mitigation potential from natural regrowth on the identified land is also quantified.For all the cases,we modelled emissions of greenhouse gases from the life-cycle stages and use parameterized models to estimate local biomass growth rates.The identified land areas range from 1.95 to 13.8 million hectares and can provide from 30 to 178 mega ton(Mt)dry biomass annually from dedicated crops.Climate change mitigation potentials range from 11 to 257 MtCO_(2)-eq.yr^(−1),depending on technological option and land availability.The largest mitigation is delivered by BECCS,but e-methanol can achieve similar findings when hydrogen is sourced from wind power.If hydrogen is produced from grid electricity,e-methanol can result in net positive emissions.E-methanol can also deliver more final energy than bioethanol(4.04 vs.1.27 EJ yr^(−1)).Natural vegetation regrowth can generally achieve higher mitigation than bioethanol,but less than biochar.An optimal combination of BECCS and natural vegetation regrowth can achieve a larger mitigation,up to 281 MtCO_(2)-eq.yr^(−1),indicating that integrated solutions can help to achieve successful land management strategies for climate change mitigation.
文摘Motivated by the increasing popularity and advocating for integrated reporting by companies on their operations,the aim of this paper is to determine the disclosure levels on land by mining houses in South Africa in their integrated reports.Developing countries,such as South Africa should ensure sustainability of their natural resources in their endeavour of growing their economies.The mining sector in South Africa is a huge contributor to the economy,but also has a significant impact on land conservation.The complexity of mining activities and impacts thereof make it challenging for organisations to disclose information on land.This paper is descriptive by design;it contains a literature review,followed by a content analysis of the mining houses integrated reports by using a checklist.The checklist was based on recommendations by the Global Reporting Initiative(GRI)guidelines as to what the content of the integrated report on land should be.Fourteen mining houses operating in South Africa and registered on the Johannesburg Stock Exchange(JSE)were identified and analysed for this study.The findings of the paper display low levels of overall disclosure on land by the South African mining companies.However,there were high levels of disclosure for EN11,EN12,and MM1 sector-specific supplement in the integrated reports.Low levels of disclosure by the mining companies were evident in MM2 the sector-specific recommendations as well as the physical and monetary information related to MM2.
基金Financial support was provided by the Coordination for the Improvement of Higher Education Personnel(CAPES)the Sao Paulo Research Foundation(FAPESP).
文摘Driving forces on the landscape require regional management and/or local actions, together with other external factors. To operationalize this approach, this paper carried out a comparative analysis of the naturalness dynamics of the Jacaré-Guaçu and Jacaré-Pepira watershed, based on land use/cover changes and a structural indicator of the landscape, over the 10-year (2004-2014), as support opportunities for improving its environmental planning and management. Land use/cover dynamics were obtained based on screen digitizing of LandSat imagery, using polygon manual digitalization. Naturalness scenarios of the watersheds, over the 10-year (2004-2014), were obtained based on Urbanity Indicator, which evaluates how much the natural landscapes are dominated by altered systems. The total area of watersheds showed a predominantly scenario, induced by anthropogenic agricultural and non-agricultural expansion areas, mainly by conversion of other land use/cover types in sugarcane cultivation. Despite the increase in natural vegetation areas, over the 10-year (2004-2014), Jacaré-Guaçu and Jacaré-Pepira watersheds are far from a sustainable condition. However Jacaré-Guaçu watershed presents a scenario of more committed naturalness due to the increase in Urbanity Index values ≥ 0.7. The historical process of land use occupation for agricultural production remains the main driving force of naturalness changes, occupying more than 70% of the total area of watersheds. These results have significant implications for fast urbanizing municipalities in providing key information about long term land use impact on the watershed structure and function, making it possible for policy makers, scientists and stakeholders to identify land uses which are hindered or enhanced under various scenarios of land use change over the time, and making it possible to explore the trade-offs between them to improve watershed management.
文摘Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation technique by the Ministry of Agriculture of China. It replaces the traditional plowshare with spiral drill, and its tilth depth is twice deeper than that by tractor tilthing. It also extends soil nutrient, moisture, oxygen and microorganism, the so-called "Four pools". Soil nutrient, oxygen, microorganism, light and rainfall use ratio is increased by 10%-100%, creating a platform for natural increase of more than 10% of crop yield. Its application to over 20 kinds of crops in 21 provinces has proved that the yield increases 10-30% with quality enhancing 5% and double water retaining capacity but no more input. When the application area of Fenlong could reach 67 million hm2, the amount of fertilizer can be reduced by 40-50 billion kg, saving 120-150 billion Yuan. In this paper, we put forward the strategy of "4+1" (arable, saline-alkali soil, grasslands, Sponge City + rivers) green development in China, and deepened the Fenlong cultivated tilled layer from 16.5 cm to 35 cm for 67 million hm2 arable land, ridged 13.3 million hm2 of saline-alkali soil for 35 cm, and also 35 cm for 67 million hm2 degraded steppe, which could have the following 3 effects: first, the 147 million hm2 of land with Fenlong cultivation could increase loosing soil to 315.491 billion m3, in* creasing by 159.26% for 120 million hm2 of arable land with the average tilled layer of 16.5 cm, which has loosing soil of only 198.1 billion m3, that is, the space of the land increases 1.6 times. Second, every hectare of plowland could store up to 450 m3/hm2 of natural rainfall, and the unused 60 m3 of saline-alkali soil and grasslands could store water of 102 billion m3, showing an increase of over 88.89% for the current plowland storage of 54 billion m3 at now, that is, double the natural rainfall storage capacity. Third, the two multiple increase of natural resources application can bring trillions of resource activation, environmental cleaning, food security, citizens, health, economic, ecological and social benefits, and makes the Chinese nation move forward in green development. Its application in "big scientific research" and "One Belt And One Road" will contribute Chinese strength to the world.
基金Under the auspices of Ministry of Education, China (No. 108148)State Key Laboratory of Urban and Regional Ecology (No. SKLURE2010-2-2)+1 种基金National Basic Research Program of China (No. 2010CB951203)Key Research Program of Shanghai Science & Technology (No. 08231200700, 08231200702)
文摘To identify impact factors on the distribution and characters of natural plants community in reclamation area, with survey data from 67 plant quadrats in July 2009, soil properties data from 216 sampling points in April 2009, and TM (30 m) data in 2006, the composition and characteristics of natural plants community in different time of the Fengxian area in the Changjiang (Yangtze) River estuary were analyzed with two-way indicator species analysis (TWINSPAN), multivariate analysis of variance (MANOVA), detrended canonical correspondence analysis (DCCA) and canonical correspondence analysis (CCA). The results show that: 1) The plant communities in the reclaimed area are mainly mesophytes and helophytic-mesophytic transitional communities, showing a gradient distribution trend with the change in reclamation years. Species richness (MA), species diversity (H) and above-ground biomass also increase with the increase of reclamation years. Nevertheless, they appear to decline slightly in the middle and late reclamation period (> 30 years). 2) With the rise in land use levels, the changes in species richness and species diversity tend to increase at first and then decrease; species dominance (D), however, tends to decline; and above-ground biomass increases slightly. 3) The distribution of the plant community is mainly influenced by the following factors: land use levels (R = 0.55, p < 0.05), soil moisture (R = 0.53, p < 0.05), soil salinity (R = 0.43, p < 0.05) and reclamation time (R = 0.40, p < 0.05).
基金funded by National Key Research and Development Program of China(No.2016YFC0503603)。
文摘Ginseng planting in Northeast China brings economic benefits but affects forest landscape integrity and native ecological processes.In order to quantify the impacts of ginseng planting on the forest landscape,Fusong County in Jilin Province was selected as a study area.The number and distribution of ginseng fields over different time was quantified based on remote sensing and ground surveys.Grid analysis and multiple regression analysis were used to study the impacts of ginseng planting on the landscape.The results showed that altitudes and slopes of ginseng fields increased and became increasingly scattered and smaller closer to the Changbai Mountain Nature Reserve.Ginseng fields and abandoned fields increased total patches and total area of the local forested landscape,and shared edge lengths between ginseng fields and forests,resulting in continuous fragmentation of the landscape.Although the total area of existing and abandoned ginseng fields accounts for a small fraction of the total landscape,their negative impacts on ecosystem conservation is significant.The local government needs to rationally plan ginseng planting,scientifically implement the restoration of abandoned ginseng lands,and enhance awareness of ginseng farmers to environmental stewardship.Our study has important significance for maintaining the healthy and stable development of the local ginseng industry and for improving the quality of regional ecological environment.
基金supported by Statutory financial support of Ministry of Science and Higher Education RP Department of Soil Science and Agrophysics[010013D011 in 2021]University of Agriculture in Krakow。
文摘As a result of socio-economic changes and land abandonment,the main ecological driver of the Carpathian landscape is the progression of the natural forest succession process.Thus,aspects of this process have become worthy of attention,especially in the context of carbon sequestration and the management of protected areas.Soil processes,especially within the topsoil,are some of the most susceptible to change,due to the accumulation of organic matter during such land-use transformations.The purposes of this study were to investigate the differences in topsoil development using the A Horizon Development Index(ADI)and to study the composition of humic substances and advanced organic matter humification in different land-use areas in selected Carpathian national parks,i.e.Bieszczady,Magura and Pieniny National Parks in southern Poland.Additionally,a goal of this study was to compare the ADI and the spectroscopic coefficients of humic substances as indicators of the degree of humus horizon shaping as well as advanced organic matter humification.In total,ten transects were selected,each consisting of three different land-use areas:semi-natural meadow,successional forest and old-growth forest.Soil colour was determined in fresh and air-dried samples using the Munsell colour chart.In air-dried soil samples p H,soil texture,total organic carbon and total nitrogen were measured.Humic substances were extracted and further characterized by UV-VIS spectroscopy.The ADI confirmed the influence of natural forest succession on soil colour darkening and the development of the uppermost soil layer.Spectroscopic analyses of humic substances showed two different patterns depending on soil depth.In the 0–10 cm layer,natural forest succession reduced the rate of the humification process and decreased the degree of maturity of fulvic acids;in the 10–20 cm layer,it led to an increase in the rate of the humification process and a decrease in the content of humic and fulvic acids at the beginning of the transformation.The comparison of two different indicators of soil development–the ADI and the spectroscopic coefficients of humic substances(Q_(4/6),Q_(2/4),Q_(2/3),Δlog K)–indicated that these indexes are based on different features of soil and cannot be used interchangeably.
文摘The intensification of anthropic uses (i.e., increase of the hemerobic condition) threatens the remnants of native vegetation due to the reduction of its self-regulation capacity. In this research, the Distance to Nature (D2N) index for land use and land cover was applied in the Río Grande de Comitán watershed (Southern Mexico) to answer the following questions: 1) What were the land use dynamics observed in the Rio Grande de Comitán watershed in the trajectory through 1999, 2009 and 2019? 2) Does the subcategorization of the D2N allow one to identify which anthropic uses influence more the territorial expression of the watershed? To answer these questions, we performed a supervised classification of land use and land cover was performed in this watershed, and for the D2N index, the classification was simplified to three-category scale for the subcategorization of the anthropic component. Through Principal Component Analysis (PCA), we identified that agricultural anthropogenic use had the greatest influence on territorial expression. The reported scenario indicates a trend of gradual and continuous reduction of naturalness over the last 20 years. Additionally, the D2N index proved to be a useful tool to demonstrate both the anthropic impact, with the simplified scale, and the component that most influences the territory, by subcategorizing the anthropic scale.
文摘After an international contest announced by the City of Abu Dhabi “Cool Abu Dhabi Challenge”<sup>1</sup> and the article published as a digest of a paper titled A Nature-based Solution [1], the decision has been made to take part in improving thermal comfort in public spaces by mitigating the impact of the effect of Urban Heat Islands (UHI)<sup>2</sup> in the city of the Belgrade. The basic research aims at achieving the balance between the conflicting impacts when the buildings with their infrastructure and water-green surrounding area are in such correlation that it fulfils acceptable living and heating standards and reduces the use of fossil fuels for cooling the urban areas (buildings). By implementing the remote detection it is possible to analyze and quantify the impact of over-building on the temperature rise in urban areas as well as the disturbance of the heating comfort and the increased demand for additional cooling. Now it is possible to create virtual models that will incorporate this newly-added urban vegetation into urban plans, depending on the evaporation potential that will affect the microclimate of the urban area. Such natural cooling can be measured and adapted and hence aimed at a potential decrease in areas with UHI emissions [2]. Suitable greenery in the summer season can be a useful improvement which concurrently enables and complements several cooling mechanisms—evaporative cooling and evapotranspiration, i.e. natural cooling systems. The remote detection shall establish and map the “healthy” and “unhealthy” greenery zones—that is the vegetation zones with the highest evaporative potential with the “cooling by evaporation” effect and also, by implementing the urban prediction model, it shall propose green infrastructure corridors aimed at a potential decrease in the Urban Heat Island Emission.