Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash...Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash, and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3-level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α= 0.001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.展开更多
paper describes a recent study on using fly ash for backfilling abandoned room and pillar mines.Detailed investigations on fly ash properties such as the strength and stiffness of settled fly ash, flowability of fly a...paper describes a recent study on using fly ash for backfilling abandoned room and pillar mines.Detailed investigations on fly ash properties such as the strength and stiffness of settled fly ash, flowability of fly ash grout, as well as chemistry and environmental aspects of fly ash backfill have been undertaken in the laboratory. Numerical modelling was also conducted to quantify the effects of fly ash backfill on the stability of underground pillars. The laboratory tests showed that with a solid concentration of approximate 50%, fly ash grout has an excellent flowability and very low viscosity. It is capable of penetrating and filling almost any voids underground if designed properly and settling as a reasonably stiff solid to provide support to the pillars. Several different types of strength tests proved that a consolidated fly ash should exhibit a friction angle above 42°. 3D numerical modelling on interaction between fly ash backfill and underground pillars has shown that fly ash backfill to 90% roadway height can raise the factor of safety(Fo S) of a marginally stable area to above 1.6, which is the number often used in rock engineering design for long term stability. Chemistry and leachate analysis of representative fly ash samples from a local power station showed that the elemental concentrations in the fly ash solid sample are lower than the allowed contaminant threshold and specific contaminant concentration levels. Geotechnical monitoring in the high risk areas of an abandoned mine has been carried out as part of the risk management and control for potential subsidence. The monitoring has been very helpful in understanding the ground behaviour around the abandoned mine which can provide timely information to the parties concerned in order to make correct decisions to control the subsidence risk.展开更多
文摘Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash, and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3-level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α= 0.001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.
基金sponsored by QLD State Government Department of Natural Resources and Mines(DNRM)
文摘paper describes a recent study on using fly ash for backfilling abandoned room and pillar mines.Detailed investigations on fly ash properties such as the strength and stiffness of settled fly ash, flowability of fly ash grout, as well as chemistry and environmental aspects of fly ash backfill have been undertaken in the laboratory. Numerical modelling was also conducted to quantify the effects of fly ash backfill on the stability of underground pillars. The laboratory tests showed that with a solid concentration of approximate 50%, fly ash grout has an excellent flowability and very low viscosity. It is capable of penetrating and filling almost any voids underground if designed properly and settling as a reasonably stiff solid to provide support to the pillars. Several different types of strength tests proved that a consolidated fly ash should exhibit a friction angle above 42°. 3D numerical modelling on interaction between fly ash backfill and underground pillars has shown that fly ash backfill to 90% roadway height can raise the factor of safety(Fo S) of a marginally stable area to above 1.6, which is the number often used in rock engineering design for long term stability. Chemistry and leachate analysis of representative fly ash samples from a local power station showed that the elemental concentrations in the fly ash solid sample are lower than the allowed contaminant threshold and specific contaminant concentration levels. Geotechnical monitoring in the high risk areas of an abandoned mine has been carried out as part of the risk management and control for potential subsidence. The monitoring has been very helpful in understanding the ground behaviour around the abandoned mine which can provide timely information to the parties concerned in order to make correct decisions to control the subsidence risk.