期刊文献+
共找到477篇文章
< 1 2 24 >
每页显示 20 50 100
Nuclear magnetic resonance study of the formation and dissociation process of nature gas hydrate in sandstone
1
作者 Dong-hui Xing Xu-wen Qin +5 位作者 Hai-jun Qiu Hong-feng Lu Yi-ren Fan Xin-min Ge Cheng Lu Jin-wen Du 《China Geology》 CAS 2022年第4期630-636,共7页
In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.... In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.The result shows that the intensity of T_(2) spectra and magnetic resonance imaging(MRI)signals gradually decreases in the hydrate formation process,and at the same time,the T_(2) spectra move toward the left domain as the growth of hydrate in the pores of the sample accelerates the decay rate.The hydrate grows and dissociates preferentially in the purer sandstone samples with larger pore size and higher porosity.Significantly,for the sample with lower porosity and higher argillaceous content,the intensity of the T_(2) spectra also shows a trend of a great decrease in the hydrate formation process,which means that high-saturation gas hydrate can also be formed in the sample with higher argillaceous content.The changes in MRI of the sample in the process show that the formation and dissociation of methane hydrate can reshape the distribution of water in the pores. 展开更多
关键词 nature gas hydrates(NGHs) Methane hydrate Nuclear magnetic resonance(NMR) Magnetic resonance imaging(MRI) Formation and dissociation Saturation Berea sandstone Marine hydrates production test Oil and gas exploration engineering
下载PDF
PLASMA TECHNOLOGY APPLICATION IN NATURE GAS CHEMICAL ENGINEERING 被引量:1
2
作者 Wang Baowei and Xu Genhui (School of Chemical Engineering, State Key Laboratory of C1 Chemical Technology, Tianjin University, Tianjin 300072) 《化工学报》 EI CAS CSCD 北大核心 2000年第S1期207-210,共4页
Nature gas is not only an increasing important role in energy and chemicals supplies in 21st century but also the second most important of the anthropogenic greenhouse gases. This paper reviewed the plasma technology ... Nature gas is not only an increasing important role in energy and chemicals supplies in 21st century but also the second most important of the anthropogenic greenhouse gases. This paper reviewed the plasma technology application in natural gas chemical engineering, pointed out the problem at present and forecasted plasma concerted catalysis technology will facilitate the nature gas directly conversion into more valuable chemicals supplies economically in short after time. 展开更多
关键词 plasma technology natural gas APPLICATION
下载PDF
Near-wellbore fracture initiation and propagation induced by drilling fluid invasion during solid fluidization mining of submarine nature gas hydrate sediments
3
作者 Hai-Yan Zhu Yi-Ke Dang +2 位作者 Guo-Rong Wang Shou-Wei Zhou Qiang Fu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1739-1752,共14页
Drilling in a natural gas hydrate formation is challenging due to the poor consolidation of the formation and the potential evaporation of the hydrate.The unreasonable down-hole pressure of the drilling fluid can not ... Drilling in a natural gas hydrate formation is challenging due to the poor consolidation of the formation and the potential evaporation of the hydrate.The unreasonable down-hole pressure of the drilling fluid can not only lead to the wellbore instability,but also change the predrilling condition of the natural gas hydrate formation,thus leading to an instable wellbore.In this paper,the integrated discrete element method(DEM)-computational fluid dynamics(CFD)work flow is developed to study the wellbore instability due to the penetration of the drilling fluid into the hydrate formation during crack propagations.The results show that the difference between in-situ stresses and overpressure directly affect the drilling fluid invasion behavior.The lower hydrate saturation leads to an easier generation of drilling fluid flow channels and the lower formation breakdown pressure.The breakdown pressure increases with the increase of hydrate saturation,this also indicates that hydrates can enhance the mechanical properties of the formation.The induced cracks are initially accompanied with higher pressure of the drilling fluid.According to the rose diagram of the fracture orientation,a wider orientation of the fracture distribution is observed at higher pressure of the invasion fluid. 展开更多
关键词 Near wellbore Crack initiation and propagation Drilling fluid invasion Natural gas hydrate Wellbore instability
下载PDF
New insights into the deposition of natural gas hydrate on pipeline surfaces:A molecular dynamics simulation study
4
作者 Jun Zhang Hai-Qiang Fu +7 位作者 Mu-Zhi Guo Zhao Wang Li-Wen Li Qi Yin You-Guo Yan Wei Wei Wei-Feng Han Jie Zhong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期694-704,共11页
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N... Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces. 展开更多
关键词 DEPOSITION Natural gas hydrate Pipelines Water affinity Adhesion strength
下载PDF
Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics
5
作者 LI Yaobin XU Tianfu +3 位作者 XIN Xin YU Han YUAN Yilong ZHU Huixing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期618-632,共15页
As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor... As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%. 展开更多
关键词 natural gas hydrate numerical simulation fluctuation characteristics depressurization production production well optimization
下载PDF
Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas
6
作者 Hongzhi Xu Jian Wang +3 位作者 Shuxia Li Fengrui Zhao Chengwen Wang Yang Guo 《Fluid Dynamics & Materials Processing》 EI 2024年第3期505-523,共19页
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti... Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio. 展开更多
关键词 Natural gas hydrate conventional gas coexistence accumulation DEPRESSURIZATION combined production
下载PDF
Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO_(2) Injection
7
作者 Shasha Feng Yi Liao +3 位作者 Weixin Liu Jianwen Dai Mingying Xie Li Li 《Fluid Dynamics & Materials Processing》 EI 2024年第2期275-292,共18页
Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil re... Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate. 展开更多
关键词 Reservoir simulation asphaltenes deposition natural gas injection CO_(2)injection
下载PDF
Green Hydrogen: Perspectives and Challenges in Using the Natural Gas Network in Ceará/Brazil
8
作者 Francisco Alfredo de Castro Mona Lisa Moura de Oliveira +1 位作者 Lutero Carmo de Lima Daniel Silveira Serra 《Journal of Geoscience and Environment Protection》 2024年第3期70-94,共25页
Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to... Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to contribute to changes in the energy mix of various countries through the use of technologies that enable its production and use with low or zero carbon emissions. In this context, Brazil has aroused great interest from other countries in exploring its renewable resources for the production of hydrogen (green hydrogen). In this sense, the use of natural gas pipelines and the use of hydrogen in mixtures with natural gas have become the subject of studies due to their economically viable alternative for the immediate use of this energy vector. However, there are still technical and regulatory challenges regarding the integration of hydrogen into the existing natural gas pipeline network. In this context, the present study aims to address the effects of hydrogen interaction with the structure of natural gas pipeline steel and the regulatory barriers to the use of this network for the transportation of green hydrogen, particularly in the state of Ceará/Brazil. After extensive analysis of literature and regulatory documents, it was concluded that: 1) Ceará/Brazil has strong potential to meet the demand for green hydrogen through the use of solar and wind energy sources;2) there is feasibility for the adaptation or conversion of natural gas infrastructure for the transportation of green hydrogen;3) discussions regarding the regulatory competence of green hydrogen transportation and distribution through the natural gas network in Brazil are still incipient;4) the current regulation of the natural gas industry can serve as a subsidy for the regulation of green hydrogen and natural gas transportation. 展开更多
关键词 Decarbonization Natural gas Green Hydrogen Pipelines
下载PDF
Catalytic performance of a Pt-Rh/CeO_2-ZrO_2-La_2O_3-Nd_2O_3 three-way compress nature gas catalyst prepared by a modified double-solvent method 被引量:6
9
作者 陈建军 胡伟 +5 位作者 黄福进 李广霞 袁山东 龚茂初 钟琳 陈耀强 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第9期857-866,共10页
A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respec... A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respectively. The as-prepared catalysts were characterized by N_2 adsorption-desorption, X-ray diffraction(XRD), CO-chemisorption, X-ray photoelectron spectroscopy(XPS) and hydrogen temperature-programmed reduction(H_2-TPR). The preformed Pt nanoparticles generated using ethanol as a reducing agent on M-DS presented enhanced Pt dispersion regardless of aging treatment as confirmed by XRD and CO-chemisorption measurements. The textural properties and reduction ability of M-DS were maintained to a large extent after aging treatment. This result was consistent with those of the N_2 adsorption-desorption and H_2-TPR, respectively. Meanwhile, the XPS analysis demonstrated that higher Pt^0 species and larger Ce^(3+) concentration could be obtained for M-DS. In the conversion of a simulated compressed natural gas(CNG) vehicle exhaust, both fresh and aged M-DS showed a significant enhancement in the activity and N_2-selectivity. Particularly, the complete conversion temperature(T_(90)) of CH_4 over the aged M-DS catalyst was 65 oC lower than that over the aged catalyst by conventional double-solvent method. 展开更多
关键词 three-way catalyst compress natural gas CH_4 conversion modified double-solvent method CeO_2-ZrO_2-La_2O_3-Nd_2O_3 rare earths
原文传递
Novel concepts of mechanical technology for gas recovery from marine hydrate reservoir 被引量:1
10
作者 Yuting Men Zhen Song +4 位作者 Ying Sun Kaili Li Xianlin Qing Hongen Sun Meng Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期78-91,共14页
According to the characteristics of marine natural gas hydrate,China has proposed the solid-state fluidization exploitation technology or natural gas hydrate,with subsea exploitation being key to the commercial recove... According to the characteristics of marine natural gas hydrate,China has proposed the solid-state fluidization exploitation technology or natural gas hydrate,with subsea exploitation being key to the commercial recovery of gas.In this paper,two new integrated tools are proposed for breaking and collecting natural gas hydrate,and their working principles and steps are illustrated.Finite element analysis,three-dimensional modeling,and simulations were conducted for both exploitation tools to verify their technological feasibility.The results show that the two exploitation tools can effectively improve the efficiency of hydrate exploitation and ensure the stability of the hydrate reservoir.This provides a reference for further research on the solid-state fluidization exploitation technology of marine gas hydrates. 展开更多
关键词 Marine natural gas hydrate Solid-state fluidization exploitation Exploitation tools Breaking Finite element simulation
下载PDF
Quantitative evaluation of gas hydrate reservoir by AVO attributes analysis based on the Brekhovskikh equation 被引量:1
11
作者 Yao Wang Yan-Fei Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2045-2059,共15页
AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underly... AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underlying free gas reservoir, is the bottom boundary mark of the hydrate reservoir. Analyzing the AVO attributes of BSR can evaluate hydrate reservoirs. However, the Zoeppritz equation which is the theoretical basis of conventional AVO technology has inherent problems: the Zoeppritz equation does not consider the influence of thin layer thickness on reflection coefficients;the approximation of the Zoeppritz equation assumes that the difference of wave impedance between the two sides of the interface is small. These assumptions are not consistent with the occurrence characteristics of natural gas hydrate. The Brekhovskikh equation, which is more suitable for thin-layer reflection coefficient calculation, is used as the theoretical basis for AVO analysis. The reflection coefficients calculated by the Brekhovskikh equation are complex numbers with phase angles. Therefore, attributes of the reflection coefficient and its phase angle changing with offset are used to analyze the hydrate reservoir's porosity, saturation, and thickness. Finally, the random forest algorithm is used to predict the reservoir porosity, hydrate saturation, and thickness of the hydrate reservoir. In the synthetic data, the inversion results based on the four attributes of the Brekhovskikh equation are better than the conventional inversion results based on the two attributes of Zoeppritz, and the thickness can be accurately predicted. The proposed method also achieves good results in the application of Blake Ridge data. According to the method proposed in this paper, the hydrate reservoir in the area has a high porosity (more than 50%), and a medium saturation (between 10% and 20%). The thickness is mainly between 200m and 300m. It is consistent with the previous results obtained by velocity analysis. 展开更多
关键词 Natural gas hydrate Brekhovskikh equation AVO attributes Random forest
下载PDF
A theoretical insight about co-pyrolysis reaction of natural gas and coal
12
作者 Mingjun Pan Chengkai Jin +3 位作者 Bingying Han Runping Ye Rongbin Zhang Gang Feng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期220-225,共6页
The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis ... The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis reaction of natural gas and coal using density functional theory.The favorable reaction conditions are presented in the form of phase diagrams.The calculation results show that the extra amount of methane may benefit the production of acetylene in the co-pyrolysis reaction,and the C/H ratio of 1:1,temperature around 3000 K and pressure at 0.1 MPa are most favorable.The results would provide basic data for related industrial process for the production of acetylene. 展开更多
关键词 Natural gas THERMODYNAMICS Hydrocarbons CO-PYROLYSIS Gibbs free energy Density functional theory
下载PDF
Experimental study on solid particle migration and production behaviors during marine natural gas hydrate dissociation by depressurization
13
作者 Yan-Long Li Fu-Long Ning +5 位作者 Meng Xu Min-Hui Qi Jia-Xin Sun Alireza Nouri De-Li Gao Neng-You Wu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3610-3623,共14页
Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behavi... Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behaviors,while their relationships were rarely reported,severely constrains quantitative evaluation of sand production risks.This paper reports the optical observations of solid particle migration and production from micrometer to mesoscopic scales conditioned to gravel packing during depressurization-induced NGH dissociation for the first time.Theoretical evolutionary modes of sand migration are established based on experimental observations,and its implications on field NGH are comprehensively discussed.Five particle migration regimes of local borehole failure,continuous collapse,wormhole expansion,extensive slow deformation,and pore-wall fluidization are proved to occur during depressurization.The types of particle migration regimes and their transmission modes during depressurization are predominantly determined by initial hydrate saturation.In contrast,the depressurization mainly dominates the transmission rate of the particle migration regimes.Furthermore,both the cumulative mass and the medium grain size of the produced sand decrease linearly with increasing initial methane hydrate(MH)saturation.Discontinuous gas bubble emission,expansion,and explosion during MH dissociation delay sand migration into the wellbore.At the same time,continuous water flow is a requirement for sand production during hydrate dissociation by depressurization.The experiments enlighten us that a constitutive model that can illustrate visible particle migration regimes and their transmission modes is urgently needed to bridge numerical simulation and field applications.Optimizing wellbore layout positions or special reservoir treatment shall be important for mitigating sand production tendency during NGH exploitation. 展开更多
关键词 Natural gas hydrate Solid particle migration Sand production Sand control SANDING Hydrate exploitation
下载PDF
Natural gas characteristics and gas-source comparisons of the Lower Triassic Feixianguan Formation,Eastern Sichuan Basin,China
14
作者 Zi-Yun Zheng Yin-Hui Zuo +5 位作者 Hua-Guo Wen De-Ming Li Yang Luo Jia-Zhen Zhang Mei-Hua Yang Jian-Cheng Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1458-1470,共13页
There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Fe... There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Feixianguan Formation and thus hampers natural gas exploration in the region,so further study is urgently required.Using experimental tests of natural gas composition,stable isotopes,and noble gas isotopes with gas chromatography(GC)and mass spectrometry(MS)studies of source rock and reservoir asphalt saturated hydrocarbons,the natural gas geochemical characteristics,the genetic identification and a gas-source comparison of the Feixianguan Formation were studied.Then,con-strained by the thermal history,the histories of gas generation and expulsion were restored by basin simulation technology.Finally,a gas accumulation model was established for the Feixianguan Formation.The results showed that(1)the H_(2)S-rich and H2S-poor gas reservoirs of the Feixianguan Formation are distributed on the east and west sides of the Kaijiang-Liangping trough in the Eastern Sichuan Basin,respectively.The carbon and hydrogen isotope compositions of the natural gas in the gas reservoirs are generally heavy and have typical characteristics of high-maturity dry gas reservoirs.(2)The natural gas of the Feixianguan Formation is organic thermogenic gas,which is mainly oil-type gas generated by the secondary cracking of crude oil.The gas-generating parent material is mainly type II kerogen.(3)The natural gas of the Feixianguan Formation in the Eastern Sichuan Basin was mainly generated by argil-laceous source rocks of the Upper Permian Longtan Formation.(4)Natural gas accumulation occurred as follows:the paleo-structure heights were filled with crude oil in the Early Jurassic,and paleo-oil res-ervoirs were formed in the Feixianguan Formation;during the Middle-Late Jurassic,the paleo-oil res-ervoirs were cracked when the reservoir temperatures rose above 160 C,and paleo-gas reservoirs were formed.Since the end of the Late Jurassic,the paleo-gas reservoirs have been adjusted and reformed to form the present-day natural gas reservoirs.These results provide a basis for studying natural gas accumulation dynamics of the Feixianguan Formation in the Eastern Sichuan Basin. 展开更多
关键词 Eastern Sichuan Basin Feixianguan Formation Natural gas origin gas-source comparison Longtan Formation
下载PDF
The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models
15
作者 Yaran Bu Changchun Wu +1 位作者 Lili Zuo Qian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期251-261,共11页
The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or inter... The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or interchange points, are calculated with a multiobjective optimization model and form a Pareto solution set in the entry/exit or point-to-point regime. Then, the commercial capacities, which can be directly applied in capacity booking, are calculated with single-objective optimization models that are transformed from the above multiobjective model based on three allocation rules and the demand of shippers.Next, peak-shaving capacities, which are daily oversupply or overdelivery amounts at inlets or deliveries,are calculated with two-stage transient optimization models. Considering the hydraulic process of a pipeline network and operating schemes of compressor stations, all the above models are mixed-integer nonlinear programming problems. Finally, a case study is made to demonstrate the ability of the models. 展开更多
关键词 Mathematical modelling Natural gas OPTIMIZATION gas transmission capacity gas network
下载PDF
Forecast of natural gas supply and demand in China under the background of “Dual Carbon Targets”
16
作者 JIA Ailin CHENG Gang +1 位作者 CHEN Weiyan LI Yilong 《Petroleum Exploration and Development》 SCIE 2023年第2期492-504,共13页
As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternative... As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry. 展开更多
关键词 carbon peak and carbon neutrality energy mix carbon emissions natural gas consumption natural gas produc-tion new energy system terminal consumption scale production supply storage and marketing
下载PDF
Origin of a giant fuzzy reflection zone and its implication for natural gas exploration in the southwestern Qiongdongnan Basin of the South China Sea
17
作者 Junhui YU Pin YAN +3 位作者 Yanlin WANG Yan QIU Guanghong TU Changliang CHEN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期710-728,共19页
The southwestern depression of the Qiongdongnan Basin(QDNB)hosts thick Cenozoic sediments and awaits major hydrocarbon discovery.Multichannel seismic(MCS)profile CFT2011 across the southwestern QDNB reveals a~60-km-wi... The southwestern depression of the Qiongdongnan Basin(QDNB)hosts thick Cenozoic sediments and awaits major hydrocarbon discovery.Multichannel seismic(MCS)profile CFT2011 across the southwestern QDNB reveals a~60-km-wide fuzzy reflection zone(FRZ)within the sediments,but its origin and distribution remain unclear.Here ocean bottom seismometer(OBS)data of Line CFT2011 are processed with focus on the velocity structures by traveltime tomography inversion and analyzed together with the coincident and adjacent MCS profiles.The OBS velocity results show that the giant FRZ features lower velocity with difference up to 1.5 km/s and smaller vertical velocity gradient than the surrounding sedimentary sequences at the same depth,likely resulting from enhanced fluid infilling.The MCS profile exhibits that the giant FRZ is about 3-9-km thick and extends from the Paleogene strata rich in organic matters upward to the lower Pleistocene sediments.Within the shallow overlying sediments,multiple bright spots with reverse polarity are imaged and their reflection amplitudes increase with offset,consistent with the features of gas-charged sediments.They are probably shallow gas reservoirs with gases sourced from the deep FRZ.Therefore,the FRZ is proposed to be a giant gas-charged zone,which probably contains lots of hydrocarbon gases migrated vertically from the deep Paleogene source rocks through the boundary faults of the depressions and the minor fractures generated under overpressure.This FRZ is also imaged on the adjacent MCS profiles MCS-L1 and MCS-L2 with the width of about 40 km and 68 km,respectively.It is roughly estimated to cover an area of~1900 km2 and host a volume of~11400 km3 assuming an average thickness of 6 km,implying huge natural gas potential in the sedimentary depression of the southwestern QDNB of the South China Sea. 展开更多
关键词 southwestern Qiongdongnan Basin fuzzy reflection zone low velocity gas charging natural gas potential
下载PDF
Are Ni/and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production?A comparison with g-Al2O3 supported catalysts
18
作者 M.Gonzalez-Castano C.Morales +4 位作者 J.C.Navarro de Miguel J.H.Boelte O.Klepel J.I.Flege H.Arellano-García 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期744-756,共13页
Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central is... Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central issue.The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes.Taking Ni and NiFe catalysts supported over g-Al_(2)O_(3) oxide as reference materials,this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO_(2) methanation.The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface.Displaying lower Turn Over Frequencies than Ni/Al catalyst,the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances.For NiFe catalysts,analogous Ni_(5)Fe_(1) alloys were constituted over both alumina and biochar supports.The highest specific activity of the catalyst series,exhibited by the NiFe/C catalyst,was related to the development of surface basic sites along with weaker NiFe-C interactions,which resulted in increased Ni0:NiO surface populations under reaction conditions.In summary,the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama. 展开更多
关键词 Biochar catalysts Carbon catalysts Ni catalysts NiFe alloy Bimetallic catalysts Synthetic natural gas CO_(2)methanation
下载PDF
Enhanced recovery of tight reservoirs after fracturing by natural gas huff-n-puff: Underlying mechanisms and influential factors
19
作者 Chuan-Jin Yao Ya-Qian Liu +3 位作者 Bai-Shuo Liu Zheng-Dong Lei Jia Zhao Lei Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3498-3515,共18页
Tight oil resources are abundant in the world.It is very important to strengthen the research on the development theory and technology of tight oil reservoirs for ensuring national energy security.Natural gas huff-n-p... Tight oil resources are abundant in the world.It is very important to strengthen the research on the development theory and technology of tight oil reservoirs for ensuring national energy security.Natural gas huff-n-puff can effectively improve the oil recovery of tight oil reservoirs.However,the pore-scale oil production characteristics and the mechanisms of natural gas huff-n-puff in matrix-fracture cores are poorly understood.The influence degree of important factors on oil recovery is not clear and the interactions between factors are rarely considered.In this paper,the oil production characteristics and mechanisms of natural gas huff-n-puff in tight cores with different fracture lengths were quantitatively analyzed by combining nuclear magnetic resonance(NMR)with numerical simulation technology.The influencing factors and their interactions were evaluated by the response surface method(RSM).The results show that tight cores mainly consist of medium pores(0.1–1μm)and small pores(0.01–0.1μm).The fracture mainly increases the proportion of macro-pores(1–10μm)and medium pores.In the natural gas huff-n-puff process,crude oil from macro-pores(1–10μm)and medium pores is mainly developed,and the contribution percentage of crude oil in medium pores to oil recovery is the largest,up to 98.28%.The position of gas–oil contact(GOC)moves deeper as the number of huff-n-puff cycles increases.The contents of CH_(4) and CO_(2) in the oil phase remain at a high level within the GOC,while between the GOC and the component sweep front,the contents of CH_(4) and CO_(2) in the oil phase decrease with the increase in dimensionless distance.The gas component sweep volume is increasing with the increase in fracture length.Moreover,the injected natural gas mainly extracts C_(3)–C_(10) components from crude oil.The reduction law of crude oil viscosity is consistent with the migration laws of CH_(4) components along the path.Compared with soaking time and gas diffusion coefficient,the injection pressure is the most significant factor underlying the recovery of natural gas huff-n-puff in tight cores.Besides the influence of single-factor,the interaction effects of gas injection pressure and diffusion also should be considered to determine the huff-n-puff parameters in the field implementation of natural gas huff-n-puff in tight reservoirs after fracturing. 展开更多
关键词 Natural gas huff-n-puff Matrix-fracture cores Nuclear magnetic resonance(NMR) Numerical simulation Response surface method(RSM)
下载PDF
Application of the monitoring and early warning system for internal solitary waves:Take the second natural gas hydrates production test in the South China Sea as an example
20
作者 Dan-yi Su Bin-bin Guo +5 位作者 Qian-yong Liang Chu-jin Liang Fei-long Lin Su-meng Jiang Yi-fei Dong Xue-min Wu 《China Geology》 CAS CSCD 2023年第4期676-684,共9页
Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ... Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ISWs was developed using technologies of double buoys monitoring, intelligent realtime data transmission, and automatic software identification. The system was applied to the second natural gas hydrates(NGHs) production test in the Shenhu Area, South China Sea(SCS) and successfully provided the early warning of ISWs for 173 days(from October 2019 to April 2020). The abrupt changes in the thrust force of the drilling platform under the attack of ISWs were consistent with the early warning information, proving the reliability of this system. A total of 93 ISWs were detected around the drilling platform. Most of them occurred during the spring tides in October–December 2019 and April 2020, while few of them occurred in winter. As suggested by the theoretical model, the full-depth structure of ISWs was a typical current profile of mode-1, and the velocities of wave-induced currents can reach 80 cm/s and30 cm/s, respectively, in the upper ocean and near the seabed. The ISWs may be primarily generated from the interactions between the topography and semidiurnal tides in the Luzon Strait, and then propagate westward to the drilling platform. This study could serve as an important reference for the early warning of ISWs for offshore engineering construction in the future. 展开更多
关键词 Internal solitary wave Early warning Offshore engineering Drilling platform Natural gas hydrates production test Shenhu Area South China Sea
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部