This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.展开更多
This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn i...This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.展开更多
In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-di...In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum,across which the density changes discontinuosly.Smoothness of the solutions and the uniqueness of the weak solutions are also discussed.The present paper extends results in Luo-Xin-Yang[12] to the jump boundary conditions case.展开更多
The zero dissipation limit of the compressible heat-conducting Navier–Stokes equations in the presence of the shock is investigated. It is shown that when the heat conduction coefficient κ and the viscosity coeffici...The zero dissipation limit of the compressible heat-conducting Navier–Stokes equations in the presence of the shock is investigated. It is shown that when the heat conduction coefficient κ and the viscosity coefficient ε satisfy κ = O(ε), κ/ε≥ c 〉 0, as ε→ 0 (see (1.3)), if the solution of the corresponding Euler equations is piecewise smooth with shock wave satisfying the Lax entropy condition, then there exists a smooth solution to the Navier–Stokes equations, which converges to the piecewise smooth shock solution of the Euler equations away from the shock discontinuity at a rate of ε. The proof is given by a combination of the energy estimates and the matched asymptotic analysis introduced in [3].展开更多
The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational f...The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.展开更多
In this article, we prove the existence and uniqueness of solutions of the NavierStokes equations with Navier slip boundary condition for incompressible fluid in a bounded domain of R^3. The results are established by...In this article, we prove the existence and uniqueness of solutions of the NavierStokes equations with Navier slip boundary condition for incompressible fluid in a bounded domain of R^3. The results are established by the Galerkin approximation method and improved the existing results.展开更多
This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational fo...This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.展开更多
In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is take...In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.展开更多
This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of th...This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.展开更多
The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes...The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as ε →0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.展开更多
Applying the theory of stratification, the solution space structure about a class of deformed Navier-Stokes equation is determined. It is proved that such kind of equation has no C-k( k greater than or equal to2) stab...Applying the theory of stratification, the solution space structure about a class of deformed Navier-Stokes equation is determined. It is proved that such kind of equation has no C-k( k greater than or equal to2) stable solution by the fact that the strate transversale is a null set.展开更多
In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in s...In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.展开更多
A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is establishe...A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument.展开更多
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous...We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.展开更多
Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine fini...Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine finite element space on the subdomain. The local algorithm consists of finding a solution for a given nonlinear problem in the coarse finite element space and a solution for a linear problem in the fine finite element space, then droping the coarse solution of the region near the boundary. By overlapping domain decomposition, the parallel algorithms are obtained. This paper analyzes the error of these algorithms and gets some error estimates which are better than those of the standard finite element method. The numerical experiments are given too. By analyzing and comparing these results, it is shown that these algorithms are correct and high efficient.展开更多
Regularity criteria of Leray-Hopf weak solutions to the three-dimensional Navier-Stokes equations in some critical spaces such as Lorentz space, Morrey space and multiplier space are derived in terms of two partial de...Regularity criteria of Leray-Hopf weak solutions to the three-dimensional Navier-Stokes equations in some critical spaces such as Lorentz space, Morrey space and multiplier space are derived in terms of two partial derivatives, θ1u1, θ2u2, of velocity fields.展开更多
This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local ...This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.展开更多
A new seven-modes truncation of Fourier series of Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is obtained.And its stationary solutions,the existence of attractor and the global stabil...A new seven-modes truncation of Fourier series of Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is obtained.And its stationary solutions,the existence of attractor and the global stability of the equations are firmly proved.At the same time,several issues such as some basic dynamical behaviors and routs to chaos are shown numerically by changing Reynolds number.The system exhibits a stochastic behavior approached through an involved sequence of bifurcations.展开更多
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.
基金supported in part by the NSF of China (10571024,10871040)the grant of Prominent Youth of Henan Province of China (0412000100)
文摘This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.
文摘In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum,across which the density changes discontinuosly.Smoothness of the solutions and the uniqueness of the weak solutions are also discussed.The present paper extends results in Luo-Xin-Yang[12] to the jump boundary conditions case.
基金the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘The zero dissipation limit of the compressible heat-conducting Navier–Stokes equations in the presence of the shock is investigated. It is shown that when the heat conduction coefficient κ and the viscosity coefficient ε satisfy κ = O(ε), κ/ε≥ c 〉 0, as ε→ 0 (see (1.3)), if the solution of the corresponding Euler equations is piecewise smooth with shock wave satisfying the Lax entropy condition, then there exists a smooth solution to the Navier–Stokes equations, which converges to the piecewise smooth shock solution of the Euler equations away from the shock discontinuity at a rate of ε. The proof is given by a combination of the energy estimates and the matched asymptotic analysis introduced in [3].
基金supported by the National Natural Science Foundation of China(11232002)the Ph.D.Student Foundation of Chinese Ministry of Education(30400002011105001)
文摘The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.
基金supported by National Board for Higher Mathematics(02011/9/2019NBHM(R.P.)/R and D Ⅱ/1324)
文摘In this article, we prove the existence and uniqueness of solutions of the NavierStokes equations with Navier slip boundary condition for incompressible fluid in a bounded domain of R^3. The results are established by the Galerkin approximation method and improved the existing results.
基金Program for New Century ExcellentTalents in University(NCET-04-0745)the Key Project of the National Natural Science Foundation of China(10431060)
文摘This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.
文摘In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.
基金supported by the Program for New Century Excellent Talents in University of the Ministry of Education(NCET-13-0804)NSFC(11471127)+3 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(2015A030306029)The Excellent Young Teachers Program of Guangdong Province(HS2015007)Pearl River S&T Nova Program of Guangzhou(2013J2200064)supported by the General Research Fund of Hong Kong,City U 104511
文摘This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.
文摘The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as ε →0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.
文摘Applying the theory of stratification, the solution space structure about a class of deformed Navier-Stokes equation is determined. It is proved that such kind of equation has no C-k( k greater than or equal to2) stable solution by the fact that the strate transversale is a null set.
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.
文摘In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.
基金partially supported by NSFC (10825102)for distinguished youth scholarsupported by the CAS-TWAS postdoctoral fellowships (FR number:3240223274)AMSS in Chinese Academy of Sciences
文摘A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument.
文摘We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.
基金Project supported by the National Natural Science Foundation of China (No. 10371096)
文摘Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine finite element space on the subdomain. The local algorithm consists of finding a solution for a given nonlinear problem in the coarse finite element space and a solution for a linear problem in the fine finite element space, then droping the coarse solution of the region near the boundary. By overlapping domain decomposition, the parallel algorithms are obtained. This paper analyzes the error of these algorithms and gets some error estimates which are better than those of the standard finite element method. The numerical experiments are given too. By analyzing and comparing these results, it is shown that these algorithms are correct and high efficient.
基金supported by the NSF of China (10801001)NSF of Anhui Province (11040606M02) the 211 Project of Anhui University (KJTD002B, KJJQ005)
文摘Regularity criteria of Leray-Hopf weak solutions to the three-dimensional Navier-Stokes equations in some critical spaces such as Lorentz space, Morrey space and multiplier space are derived in terms of two partial derivatives, θ1u1, θ2u2, of velocity fields.
基金partially supported by the NSFC(10871134)the AHRDIHL Project of Beijing Municipality (PHR201006107)
文摘This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.
基金Supported by the Natural Science Foundation of China(41174090)
文摘A new seven-modes truncation of Fourier series of Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is obtained.And its stationary solutions,the existence of attractor and the global stability of the equations are firmly proved.At the same time,several issues such as some basic dynamical behaviors and routs to chaos are shown numerically by changing Reynolds number.The system exhibits a stochastic behavior approached through an involved sequence of bifurcations.