The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance an...The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.展开更多
The separator is a key component of sodium-ion battery,which greatly affects the electrochemical performances and safety characteristics of the battery.Conventional glass fiber separator cannot meet the requirements o...The separator is a key component of sodium-ion battery,which greatly affects the electrochemical performances and safety characteristics of the battery.Conventional glass fiber separator cannot meet the requirements of large-scale application because of high cost and poor mechanical properties.Herein,the novel composite separators are prepared by a simple slurry sieving process using glass fiber separator scraps and ordinary qualitative filter paper as raw materials.As the composite mass ratio is 1:1,the composite separator has excellent comprehensive properties,including tensile strength of 15.8 MPa,porosity of 74.3%,ionic conductivity of 1.57×10^(-3)S·cm^(-1)and thermal stability at 210℃.The assembled sodium-ion battery shows superior cycling performance(capacity retention of 94.1%after 500 cycles at 1C)and rate capacity(retention rate of 87.3%at 10C),and it maintains fine interface stability.The above results provide some new ideas for the separator design of high-performance and low-cost sodium-ion batteries.展开更多
In the Research Article“A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification,”Zhihong Zhang was erroneously listed as an author.The PDF and HTML(full text)have been correc...In the Research Article“A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification,”Zhihong Zhang was erroneously listed as an author.The PDF and HTML(full text)have been corrected.展开更多
Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources,requiring additional CO_(2)capture to decarbonize, which energy intense and costly....Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources,requiring additional CO_(2)capture to decarbonize, which energy intense and costly. In a recent Green Energy & Environment paper, Cheng and Di et al. proposed a novel integration process referred to as SECLR_(HC) to generate high-purity H_(2) by in-situ separation of H_(2)and CO without using any additional separation unit. Theoretically, the proposed process can essentially achieve the separation of C and H in gaseous fuel via a reconfigured reaction process, and thus attaining high-purity hydrogen of ~99%, as well as good carbon and hydrogen utilization rates and economic feasibility. It displays an optimistic prospect that industrial decarbonization is not necessarily expensive, as long as a suitable CCS measure can be integrated into the industrial manufacturing process.展开更多
In recent years, the sodium storage mechanism and performance optimization of FeS2 have been studied intensively. However, before the commercial application of FeS2, preconditions of low-cost, simple craft and scale p...In recent years, the sodium storage mechanism and performance optimization of FeS2 have been studied intensively. However, before the commercial application of FeS2, preconditions of low-cost, simple craft and scale production of nanoscale FeS2 are also essential. Based on above challenges, mesh-like FeS2/carbon tube/FeS2 composites are prepared simply from green, low-cost and renewable natural herb in this work. With the assistance of protogenetic interconnected carbon tube network(only 5.3 wt%), FeS2/carbon tube/FeS2 composites show high capacity(542.2 mA h g^-1), good stability(< 0.005% per cycle over 1000 cycles), and excellent rate performance(426.2 mA h g^-1 at 2 A g^-1).The outstanding electrochemical performance of FeS2/carbon tube/FeS2 composites may be attributed to the unique interconnected reticular structure, meaning that FeS2 nanoparticles are effectively immobilized by carbon tube network via physical encapsulation and chemical bonding.More importantly, this work may provide green and low cost preparation method for specially structured metal sulfides/carbon composites,which promotes their commercial utilization in environmentally friendly energy storage system.展开更多
1.IntroductionSince the Nd-Fe-B magnets appearedin 1983,researchers,producers and users ofthe permanent magnetic materials have paidgreat attention to them.Because the mag-nets have low Curie temperature Tc andbad the...1.IntroductionSince the Nd-Fe-B magnets appearedin 1983,researchers,producers and users ofthe permanent magnetic materials have paidgreat attention to them.Because the mag-nets have low Curie temperature Tc andbad thermal stability as well as easeoxidation,their applications are limited insome fields.The researchers are greatly in-terested in increase energy product展开更多
As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are th...As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are the cost and simplicity of the implementation method. It is clear that the major share of the total cost is referred to the internal controlling system network; although there are too many methods proposed but still there is not any satisfying method at the consumers' point of view. In this paper, a novel solution for this demand is proposed, which not only minimizes the implementation cost, but also provides a high level of reliability and simplicity of operation; feasibility, extendibility, and flexibility are other leading properties of the design.展开更多
Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a lar...Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a large external surface area was obtained by dissolving pseudoboehmite and tetraethylorthosilicate in an aqueous solution of tetraethylammonium hydroxide and subsequently adding phosphoric acid. After hydrolysis in an alkaline solution, the aluminum and silicon precursors exist as Al(OH)4-and SiO2(OH)-, respectively;this is beneficial for rapid nucleation and the formation of nanoaggregates in the following crystallization process. Additionally, to study the effect of the external surface area and pore size on the catalytic performance of different SAPO-34 structures, the alcoholysis of furfuryl alcohol to ethyl levulinate(EL) was chosen as a model reaction. In a comparison with the traditional cube-like SAPO-34, nanoaggregate SAPO-34 generated a higher yield of 74.1% of EL, whereas that with cube-like SAPO-34 was only 19.9%. Moreover, the stability was remarkably enhanced for nanoaggregate SAPO-34. The greater external surface area and larger number of external surface acid sites are helpful in improving the catalytic performance and avoiding coke deposition.展开更多
Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon c...Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon converts into porous carbon nanospheres. Three types of coconut wastes, namely, coconut fiber(CF), coconut leaves(CL) and coconut stick(CS) have been studied and compared for their application in supercapacitors. Uniform spherical shape with particle size ranging from 30 to 60 nm for leaves and sticks and20 nm for fibers was obtained. The electrochemical properties of the porous carbon nanospheres were studied using cyclic voltammetry(CV), chronopotentiometry(CP) and electrochemical impedance spectroscopy(EIS). The porous carbon nanospheres derived from all the three biowaste samples show good electrochemical performance for supercapacitor application. Porous carbon nanospheres derived from coconut fiber exhibited maximum specific capacitance of 236 F/g followed by coconut stick and coconut leaves with 208 and 116 F/g respectively at a scan rate of 2 m V/s. Further impedance studies showed a charge transfer resistance of 4.9 for the porous carbon nanospheres derived from coconut fiber, while those from coconut leaves and coconut stick exhibited a slightly higher resistance of 6 and14.2, respectively. The simple eco-friendly approach we have demonstrated for synthesizing coconut waste based carbon nanospheres makes them excellent candidates for future, low-cost, energy storage devices.展开更多
Protein-energy malnutrition among children is the major health challenges and it may be related to low nutritional quality of traditional complementary foods and high cost of quality protein-based complementary foods....Protein-energy malnutrition among children is the major health challenges and it may be related to low nutritional quality of traditional complementary foods and high cost of quality protein-based complementary foods. The aim of this study was formulation, preparation and evaluation of low-cost extruded products based on cereals and pulses. Composite flours were prepared using cereals and pulses, then formulated and extruded by a twin screw extruder in Osmania University, Hyderabad, India. Data were analyzed by SPSS software. Results showed: the protein contents of extruded formulas B, D and F were in the highest values. Carbohydrate in the extruded formula A was significantly higher than others. The lowest amount of ash and crude fiber were observed in the formula A. Content of energy in the extruded formulas E, F and C was higher;mean (SD) of Fe content in the extruded formula B, D and F was in the higher ranks among others. Calcium content in the extruded formulas C, E and F was in the highest amounts. Magnesium content in the extruded formulas B, D and F was higher than others. Cu content in the extruded formula C, D, B and F was higher than others. Manganese content in the extruded formulas B, C and F, and zinc content in the formulas B, D and F were higher than others. Tap density showed the lowest amount in the formula B, D and F, while their bulk density was higher. WHC was in the highest amount in the extruded formula A, while WSI in the extruded formula B, D and followed by F was in the highest amount. The mean scores of sensory evaluation of extruded products F showed that this combination has significantly better colour, flavour, texture and overall acceptability than others.展开更多
A good design of LNA for S band satellite navigation receivers and 4G LTE wireless communication system has been implemented in this paper.Due to increased congestion in the present L band,the S Band frequency from 24...A good design of LNA for S band satellite navigation receivers and 4G LTE wireless communication system has been implemented in this paper.Due to increased congestion in the present L band,the S Band frequency from 2483.5-2500 MHz has been allocated for the future satellite navigation systems.For this purpose ATF-34143 amplifier(pHEMT)having high electron mobility and fast switching response has been chosen due to its very low Noise Figure(NF).The amplifier has been designed having bandwidth of 0.8 GHz from 1.8-2.6 GHz.Because of the large bandwidth,the amplifier could serve many wireless communication applications including 4G LTE mobile communication at 2.1 GHz.The design was implemented using the micro strip technology offering extremely low noise figure of 0.312 dB and 0.377 dB for 2.1 GHz and 2.49 GHz respectively.The gain of the amplifier was low and found to be 10.281 dB and 9.175 dB.For the purpose of increasing the gain of an amplifier,the proposed LNA design was then optimized by using Wilkinson Power Divider(WPD).The Balanced LNA design using WPD offered very low noise figure of 0.422 dB and 0.532 dB respectively and the gain was considerably increased and was found to be 20.087 dB and 17.832 dB respectively against 2.1 GHz and 2.49 GHz.Simulations and measurements were taken in Agilent Advanced Design System(ADS)software.The suggested LNA can be used for a variety of wireless communications applications including the future S band satellite navigation systems.展开更多
Simple GNSS navigation receivers, developed for the mass market, can be used for positioning with sub centimeter accuracy in a wireless sensor network if the read-out of the carrier phase data is possible and all data...Simple GNSS navigation receivers, developed for the mass market, can be used for positioning with sub centimeter accuracy in a wireless sensor network if the read-out of the carrier phase data is possible and all data is permanently broadcast to a central computer for near real time processing of the respective base lines. Experiences gained in two research projects related to landslide monitoring are depicted in terms of quality and reliability of the results by the developed approach. As far as possible a modular system set up with commercial off-the-shelf components, e.g., standard WLAN fur commtmication, solar batteries with solar panels for autarkic power supply and in cooperation of existing proofed program tools is chosen. The challenge of the still ongoing development is to have a flexible and robust GNSS based sensor network available - concerned not only for landslide monitoring in future.展开更多
The worldwide space industry has entered a new space economy era.The question is how to develop in this new era?This paper tries to answer this question from two aspects:highly reliable and low-cost technology for acc...The worldwide space industry has entered a new space economy era.The question is how to develop in this new era?This paper tries to answer this question from two aspects:highly reliable and low-cost technology for access to space,and the cislunar economic zone.Firstly,the development requirement of the future space transportation system is discussed and the development path to enable high-reliability and a low cost of space transportation system is analyzed.Moreover,the concept of a routine space transportation system is proposed,upon which this paper gives some thoughts to the development of the cislunar economic zone thus embracing the new space economy era.展开更多
By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind...By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.展开更多
Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall ...Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall water splitting system because it involves 4e- and 4H+ transfer processes.Currently,it is highly desirable to explore low-cost alternative catalysts for OER at ambient conditions.Herein,we report for the first time that nickel phosphide(Ni2P)nanosheets can be facilely grown on Fe foam(FF)as an efficient electrocatalyst for OER with excellent durability and catalytic activity under alkaline conditions.To reach a current density of 10 m A/cm2,the Ni2P-FF catalyst required a low overpotential of only 198 mV for OER.The catalyst’s high OER activity and durability were well maintained at a high current density.The required overpotentials were only 267 and 313 mV to achieve the current densities of 100 and 300 m A/cm2,respectively.The combination of low-cost Fe foam with Ni2P provides a promising low-cost catalyst for large-scale application of electrocatalytic water splitting.展开更多
This paper analyzes the launch price of the launch vehicles, domestic and abroad, studies the status and trend of the low cost launch vehicles, and introduces two measures to reduce the cost by means of evolved and di...This paper analyzes the launch price of the launch vehicles, domestic and abroad, studies the status and trend of the low cost launch vehicles, and introduces two measures to reduce the cost by means of evolved and disruptive technologies, utilizing the concept of low cost manufacturing and operating modes as well. This paper also analyzes the launch strategies for small satellites such as piggyback, networking launch, and single launch with a small launch vehicle(SLV). Finally, the development trend of reusable launch vehicles is discussed as well as the development prospects for China's reusable launch vehicle.展开更多
Urbanization in developing countries often negatively impacts water re-sources by polluting surface waters. Addis Ababa, Ethiopia, is currently experiencing rapid urbanization accompanied by significant water shortage...Urbanization in developing countries often negatively impacts water re-sources by polluting surface waters. Addis Ababa, Ethiopia, is currently experiencing rapid urbanization accompanied by significant water shortages, unmanaged stormwater, and increasing river water pollution. To supplement the need for non-potable water and address stormwater runoff pollution, we constructed a low cost stormwater filtration system. The filtration system is comprised of a sedimentation area followed by three gravel grain sizes arranged horizontally from coarse to medium to fine filter media. We compared the quality of pretreatment water with post-treatment water by measuring physicochemical parameters, heavy metals and nutrients. We found that the filtration system reduced turbidity by 87%, TSS by 80%, Cu by 87% and Zn by 90%. Further, it positively increased the concentration of DO by 42%. However, the filtration system did not remove nitrates and nitrites. Implementing this system at outfalls in the rapidly expanding condominium housing areas can increase residents’ supply of non-potable water and reduce the amount of polluted stormwater entering nearby streams and rivers.展开更多
Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined acti...Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.展开更多
Low cost processing of lignocellulosic biomass is of great importance for sustainable chemistry and engineering.Herein,a low cost system composed of 1-butyl-3-methylimidazolium chloride([C_(4)C_(1) im]Cl),HCl and form...Low cost processing of lignocellulosic biomass is of great importance for sustainable chemistry and engineering.Herein,a low cost system composed of 1-butyl-3-methylimidazolium chloride([C_(4)C_(1) im]Cl),HCl and formaldehyde(FA)was developed for the pretreatment of corn stalk at 80℃.The efficiency of this technology was compared with that in dioxane system or without FA addition.Due to FA stabilization,the extent of acid-hydrolysis of carbohydrate fraction can be significantly decreased while 70%above of lignin was removed with the pretreatment of[C_(4)C_(1) im]Cl/HCl/FA system at 80℃for 2 h.A maximum reducing sugar yield of 93.7%and glucose concentration of 7.0 mg·ml^(-1) were subsequently obtained from enzymatic hydrolysis of the slurry.There were great differences in compositions of small molecule degraded products obtained with FA addition or not.The present[C_(4)C_(1) im]C_(l) based system exhibits great potential of substituting volatile organic solvents(i.e.dioxane)in developing low cost lignocellulosic biomass pretreatment at low temperature.Also,this work would gain insight into understanding on the roles of stabilization methods on the economic improvement of IL based biomass processing.展开更多
With the increasing number of web services, it becomes a difficult task for an ordinary user to select an appropriate service. Hence, it is conventional that users in a digital community network take part in a collabo...With the increasing number of web services, it becomes a difficult task for an ordinary user to select an appropriate service. Hence, it is conventional that users in a digital community network take part in a collaborative mechanism for the purpose of service selection. The participation usually brings unnecessary burdens for users, such as giving opinions, storing service information. Extra communication overhead hinders the performance of the network. Thus, the community administrators are facing a problem of how to obtain an overall service selection result for the whole community readily and effectively. To address this problem, we present a k-median facility location agent model. The model analyzes the procedure of service selection through five entities and six types of messages. Two algorithms are elaborated in pursuit of a global optimization concerning connection costs between users and facilities where services are deployed. To evaluate our model, we conduct extensive simulations and present a detailed analysis of the simulation results.展开更多
文摘The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.
基金financially supported by the National Natural Science Foundation of China (Nos.52002106,22262013,and 52102261)the Talent Project of Anhui Provincial Department of Education (Nos.gxyqZD2021127 and gxbjZ D2022050)+1 种基金the Natural Science Foundation of Anhui Province,China (Nos.2108085QB68,2208085QB34,and2022AH052157)the Research Funds for Hefei Normal University (Nos.14098100 and 2021cyxy061)。
文摘The separator is a key component of sodium-ion battery,which greatly affects the electrochemical performances and safety characteristics of the battery.Conventional glass fiber separator cannot meet the requirements of large-scale application because of high cost and poor mechanical properties.Herein,the novel composite separators are prepared by a simple slurry sieving process using glass fiber separator scraps and ordinary qualitative filter paper as raw materials.As the composite mass ratio is 1:1,the composite separator has excellent comprehensive properties,including tensile strength of 15.8 MPa,porosity of 74.3%,ionic conductivity of 1.57×10^(-3)S·cm^(-1)and thermal stability at 210℃.The assembled sodium-ion battery shows superior cycling performance(capacity retention of 94.1%after 500 cycles at 1C)and rate capacity(retention rate of 87.3%at 10C),and it maintains fine interface stability.The above results provide some new ideas for the separator design of high-performance and low-cost sodium-ion batteries.
文摘In the Research Article“A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification,”Zhihong Zhang was erroneously listed as an author.The PDF and HTML(full text)have been corrected.
文摘Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources,requiring additional CO_(2)capture to decarbonize, which energy intense and costly. In a recent Green Energy & Environment paper, Cheng and Di et al. proposed a novel integration process referred to as SECLR_(HC) to generate high-purity H_(2) by in-situ separation of H_(2)and CO without using any additional separation unit. Theoretically, the proposed process can essentially achieve the separation of C and H in gaseous fuel via a reconfigured reaction process, and thus attaining high-purity hydrogen of ~99%, as well as good carbon and hydrogen utilization rates and economic feasibility. It displays an optimistic prospect that industrial decarbonization is not necessarily expensive, as long as a suitable CCS measure can be integrated into the industrial manufacturing process.
基金supported by the Natural Science Foundation of China (Grant No. U1804126, U1804129, 21671205, 21771164 and 21701202)Key Scientific Research Projects of Universities in Henan Province (Grant No. 19A430032 and 18A430034)+2 种基金Program for Interdisciplinary Direction Team in Zhongyuan University of Technologythe Collaborative Innovation Centre of Henan Textile and Clothing Industrythe Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant No. 164100510007 and CXTD2015018)
文摘In recent years, the sodium storage mechanism and performance optimization of FeS2 have been studied intensively. However, before the commercial application of FeS2, preconditions of low-cost, simple craft and scale production of nanoscale FeS2 are also essential. Based on above challenges, mesh-like FeS2/carbon tube/FeS2 composites are prepared simply from green, low-cost and renewable natural herb in this work. With the assistance of protogenetic interconnected carbon tube network(only 5.3 wt%), FeS2/carbon tube/FeS2 composites show high capacity(542.2 mA h g^-1), good stability(< 0.005% per cycle over 1000 cycles), and excellent rate performance(426.2 mA h g^-1 at 2 A g^-1).The outstanding electrochemical performance of FeS2/carbon tube/FeS2 composites may be attributed to the unique interconnected reticular structure, meaning that FeS2 nanoparticles are effectively immobilized by carbon tube network via physical encapsulation and chemical bonding.More importantly, this work may provide green and low cost preparation method for specially structured metal sulfides/carbon composites,which promotes their commercial utilization in environmentally friendly energy storage system.
文摘1.IntroductionSince the Nd-Fe-B magnets appearedin 1983,researchers,producers and users ofthe permanent magnetic materials have paidgreat attention to them.Because the mag-nets have low Curie temperature Tc andbad thermal stability as well as easeoxidation,their applications are limited insome fields.The researchers are greatly in-terested in increase energy product
文摘As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are the cost and simplicity of the implementation method. It is clear that the major share of the total cost is referred to the internal controlling system network; although there are too many methods proposed but still there is not any satisfying method at the consumers' point of view. In this paper, a novel solution for this demand is proposed, which not only minimizes the implementation cost, but also provides a high level of reliability and simplicity of operation; feasibility, extendibility, and flexibility are other leading properties of the design.
文摘Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a large external surface area was obtained by dissolving pseudoboehmite and tetraethylorthosilicate in an aqueous solution of tetraethylammonium hydroxide and subsequently adding phosphoric acid. After hydrolysis in an alkaline solution, the aluminum and silicon precursors exist as Al(OH)4-and SiO2(OH)-, respectively;this is beneficial for rapid nucleation and the formation of nanoaggregates in the following crystallization process. Additionally, to study the effect of the external surface area and pore size on the catalytic performance of different SAPO-34 structures, the alcoholysis of furfuryl alcohol to ethyl levulinate(EL) was chosen as a model reaction. In a comparison with the traditional cube-like SAPO-34, nanoaggregate SAPO-34 generated a higher yield of 74.1% of EL, whereas that with cube-like SAPO-34 was only 19.9%. Moreover, the stability was remarkably enhanced for nanoaggregate SAPO-34. The greater external surface area and larger number of external surface acid sites are helpful in improving the catalytic performance and avoiding coke deposition.
文摘Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon converts into porous carbon nanospheres. Three types of coconut wastes, namely, coconut fiber(CF), coconut leaves(CL) and coconut stick(CS) have been studied and compared for their application in supercapacitors. Uniform spherical shape with particle size ranging from 30 to 60 nm for leaves and sticks and20 nm for fibers was obtained. The electrochemical properties of the porous carbon nanospheres were studied using cyclic voltammetry(CV), chronopotentiometry(CP) and electrochemical impedance spectroscopy(EIS). The porous carbon nanospheres derived from all the three biowaste samples show good electrochemical performance for supercapacitor application. Porous carbon nanospheres derived from coconut fiber exhibited maximum specific capacitance of 236 F/g followed by coconut stick and coconut leaves with 208 and 116 F/g respectively at a scan rate of 2 m V/s. Further impedance studies showed a charge transfer resistance of 4.9 for the porous carbon nanospheres derived from coconut fiber, while those from coconut leaves and coconut stick exhibited a slightly higher resistance of 6 and14.2, respectively. The simple eco-friendly approach we have demonstrated for synthesizing coconut waste based carbon nanospheres makes them excellent candidates for future, low-cost, energy storage devices.
文摘Protein-energy malnutrition among children is the major health challenges and it may be related to low nutritional quality of traditional complementary foods and high cost of quality protein-based complementary foods. The aim of this study was formulation, preparation and evaluation of low-cost extruded products based on cereals and pulses. Composite flours were prepared using cereals and pulses, then formulated and extruded by a twin screw extruder in Osmania University, Hyderabad, India. Data were analyzed by SPSS software. Results showed: the protein contents of extruded formulas B, D and F were in the highest values. Carbohydrate in the extruded formula A was significantly higher than others. The lowest amount of ash and crude fiber were observed in the formula A. Content of energy in the extruded formulas E, F and C was higher;mean (SD) of Fe content in the extruded formula B, D and F was in the higher ranks among others. Calcium content in the extruded formulas C, E and F was in the highest amounts. Magnesium content in the extruded formulas B, D and F was higher than others. Cu content in the extruded formula C, D, B and F was higher than others. Manganese content in the extruded formulas B, C and F, and zinc content in the formulas B, D and F were higher than others. Tap density showed the lowest amount in the formula B, D and F, while their bulk density was higher. WHC was in the highest amount in the extruded formula A, while WSI in the extruded formula B, D and followed by F was in the highest amount. The mean scores of sensory evaluation of extruded products F showed that this combination has significantly better colour, flavour, texture and overall acceptability than others.
文摘A good design of LNA for S band satellite navigation receivers and 4G LTE wireless communication system has been implemented in this paper.Due to increased congestion in the present L band,the S Band frequency from 2483.5-2500 MHz has been allocated for the future satellite navigation systems.For this purpose ATF-34143 amplifier(pHEMT)having high electron mobility and fast switching response has been chosen due to its very low Noise Figure(NF).The amplifier has been designed having bandwidth of 0.8 GHz from 1.8-2.6 GHz.Because of the large bandwidth,the amplifier could serve many wireless communication applications including 4G LTE mobile communication at 2.1 GHz.The design was implemented using the micro strip technology offering extremely low noise figure of 0.312 dB and 0.377 dB for 2.1 GHz and 2.49 GHz respectively.The gain of the amplifier was low and found to be 10.281 dB and 9.175 dB.For the purpose of increasing the gain of an amplifier,the proposed LNA design was then optimized by using Wilkinson Power Divider(WPD).The Balanced LNA design using WPD offered very low noise figure of 0.422 dB and 0.532 dB respectively and the gain was considerably increased and was found to be 20.087 dB and 17.832 dB respectively against 2.1 GHz and 2.49 GHz.Simulations and measurements were taken in Agilent Advanced Design System(ADS)software.The suggested LNA can be used for a variety of wireless communications applications including the future S band satellite navigation systems.
文摘Simple GNSS navigation receivers, developed for the mass market, can be used for positioning with sub centimeter accuracy in a wireless sensor network if the read-out of the carrier phase data is possible and all data is permanently broadcast to a central computer for near real time processing of the respective base lines. Experiences gained in two research projects related to landslide monitoring are depicted in terms of quality and reliability of the results by the developed approach. As far as possible a modular system set up with commercial off-the-shelf components, e.g., standard WLAN fur commtmication, solar batteries with solar panels for autarkic power supply and in cooperation of existing proofed program tools is chosen. The challenge of the still ongoing development is to have a flexible and robust GNSS based sensor network available - concerned not only for landslide monitoring in future.
文摘The worldwide space industry has entered a new space economy era.The question is how to develop in this new era?This paper tries to answer this question from two aspects:highly reliable and low-cost technology for access to space,and the cislunar economic zone.Firstly,the development requirement of the future space transportation system is discussed and the development path to enable high-reliability and a low cost of space transportation system is analyzed.Moreover,the concept of a routine space transportation system is proposed,upon which this paper gives some thoughts to the development of the cislunar economic zone thus embracing the new space economy era.
基金supported by General Motors (Low-cost Hybrid Electric Propulsion System)
文摘By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.
基金financially supported by the National Key Research and Development Program of China (2017YFA0402800)the National Natural Science Foundation of China (51772285)the National Synchrotron Radiation Laboratory at USTC.
文摘Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall water splitting system because it involves 4e- and 4H+ transfer processes.Currently,it is highly desirable to explore low-cost alternative catalysts for OER at ambient conditions.Herein,we report for the first time that nickel phosphide(Ni2P)nanosheets can be facilely grown on Fe foam(FF)as an efficient electrocatalyst for OER with excellent durability and catalytic activity under alkaline conditions.To reach a current density of 10 m A/cm2,the Ni2P-FF catalyst required a low overpotential of only 198 mV for OER.The catalyst’s high OER activity and durability were well maintained at a high current density.The required overpotentials were only 267 and 313 mV to achieve the current densities of 100 and 300 m A/cm2,respectively.The combination of low-cost Fe foam with Ni2P provides a promising low-cost catalyst for large-scale application of electrocatalytic water splitting.
文摘This paper analyzes the launch price of the launch vehicles, domestic and abroad, studies the status and trend of the low cost launch vehicles, and introduces two measures to reduce the cost by means of evolved and disruptive technologies, utilizing the concept of low cost manufacturing and operating modes as well. This paper also analyzes the launch strategies for small satellites such as piggyback, networking launch, and single launch with a small launch vehicle(SLV). Finally, the development trend of reusable launch vehicles is discussed as well as the development prospects for China's reusable launch vehicle.
文摘Urbanization in developing countries often negatively impacts water re-sources by polluting surface waters. Addis Ababa, Ethiopia, is currently experiencing rapid urbanization accompanied by significant water shortages, unmanaged stormwater, and increasing river water pollution. To supplement the need for non-potable water and address stormwater runoff pollution, we constructed a low cost stormwater filtration system. The filtration system is comprised of a sedimentation area followed by three gravel grain sizes arranged horizontally from coarse to medium to fine filter media. We compared the quality of pretreatment water with post-treatment water by measuring physicochemical parameters, heavy metals and nutrients. We found that the filtration system reduced turbidity by 87%, TSS by 80%, Cu by 87% and Zn by 90%. Further, it positively increased the concentration of DO by 42%. However, the filtration system did not remove nitrates and nitrites. Implementing this system at outfalls in the rapidly expanding condominium housing areas can increase residents’ supply of non-potable water and reduce the amount of polluted stormwater entering nearby streams and rivers.
基金supported by the Universiti Kebangsaan Malaysia Grant(Grant No.GUP-2014-077)
文摘Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.
基金supported by the National Natural Science Foun-dation of China(21776026,22078023)Liaoning Revitalization Talents Program(XLYC1902037).
文摘Low cost processing of lignocellulosic biomass is of great importance for sustainable chemistry and engineering.Herein,a low cost system composed of 1-butyl-3-methylimidazolium chloride([C_(4)C_(1) im]Cl),HCl and formaldehyde(FA)was developed for the pretreatment of corn stalk at 80℃.The efficiency of this technology was compared with that in dioxane system or without FA addition.Due to FA stabilization,the extent of acid-hydrolysis of carbohydrate fraction can be significantly decreased while 70%above of lignin was removed with the pretreatment of[C_(4)C_(1) im]Cl/HCl/FA system at 80℃for 2 h.A maximum reducing sugar yield of 93.7%and glucose concentration of 7.0 mg·ml^(-1) were subsequently obtained from enzymatic hydrolysis of the slurry.There were great differences in compositions of small molecule degraded products obtained with FA addition or not.The present[C_(4)C_(1) im]C_(l) based system exhibits great potential of substituting volatile organic solvents(i.e.dioxane)in developing low cost lignocellulosic biomass pretreatment at low temperature.Also,this work would gain insight into understanding on the roles of stabilization methods on the economic improvement of IL based biomass processing.
基金This work is supported by Program for the Key Program of NSFC-Guangdong Union Foundation (U1135002), Major national S&T program (2011ZX03005-002), National Natural Science Foundation of China (60872041, 61072066), the Fundamental Research Funds for the Central Universities (JY10000903001, JY10000901034, K5051203010) and the GAD Pre-Research Foundation (9140A 15040210HK61 ).
文摘With the increasing number of web services, it becomes a difficult task for an ordinary user to select an appropriate service. Hence, it is conventional that users in a digital community network take part in a collaborative mechanism for the purpose of service selection. The participation usually brings unnecessary burdens for users, such as giving opinions, storing service information. Extra communication overhead hinders the performance of the network. Thus, the community administrators are facing a problem of how to obtain an overall service selection result for the whole community readily and effectively. To address this problem, we present a k-median facility location agent model. The model analyzes the procedure of service selection through five entities and six types of messages. Two algorithms are elaborated in pursuit of a global optimization concerning connection costs between users and facilities where services are deployed. To evaluate our model, we conduct extensive simulations and present a detailed analysis of the simulation results.