This paper proposes an artificial neural network to determine orientation using polarized skylight. This neural network has specific dilated convolution, which can extract light intensity information of different pola...This paper proposes an artificial neural network to determine orientation using polarized skylight. This neural network has specific dilated convolution, which can extract light intensity information of different polarization directions. Then, the degree of polarization (DOP) and angle of polarization (AOP) are directly extracted in the network. In addition, the exponential function encoding of orientation is designed as the network output, which can better reflect the insect’s encoding of polarization information and improve the accuracy of orientation determination. Finally, training and testing were conducted on a public polarized skylight navigation dataset, and the experimental results proved the stability and effectiveness of the network.展开更多
基金Funding was provided by the National Key Research and Development Program of China(Grant No.2021ZD0200300)National Natural Science Foundation of China(NSFC)(U2031138).
文摘This paper proposes an artificial neural network to determine orientation using polarized skylight. This neural network has specific dilated convolution, which can extract light intensity information of different polarization directions. Then, the degree of polarization (DOP) and angle of polarization (AOP) are directly extracted in the network. In addition, the exponential function encoding of orientation is designed as the network output, which can better reflect the insect’s encoding of polarization information and improve the accuracy of orientation determination. Finally, training and testing were conducted on a public polarized skylight navigation dataset, and the experimental results proved the stability and effectiveness of the network.