The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 an...The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.展开更多
Using CH4 and CF4 precursor gases, amorphous fluorinated hydrocarbon (a-C:F:H) films were prepared with the method of microwave electronic cyclotron resonant (ECR) plasma chemical vapor deposition. Deposition rate of ...Using CH4 and CF4 precursor gases, amorphous fluorinated hydrocarbon (a-C:F:H) films were prepared with the method of microwave electronic cyclotron resonant (ECR) plasma chemical vapor deposition. Deposition rate of the film firstly increases and then decreases with variable flow ratios R {[CF4]/([CF4] + [CH4]} due to the competition between deposition and etching process. Results from Fourier-transform infrared transmission spectroscopy of these films show that C-F bond configuration in a-C:F:H films evolves with the variable gas flow ratios R. The locations of the C-F peaks in IR spectra shift to higher frequency with the increase of R, and finally the structure in films with R >75% takes on a PTFE-like structure, which mainly consists of -CF2- chain. The change of optical band gap Eg deduced by a Tauc plot with R is also discussed.展开更多
Cadmium tin oxide Cd2SnO4 thin films with a thickness of 228.5 nm were prepared by RF magnetron sputtering technique on glass substrates at room temperature. AFM has been utilized to study the morphology of these film...Cadmium tin oxide Cd2SnO4 thin films with a thickness of 228.5 nm were prepared by RF magnetron sputtering technique on glass substrates at room temperature. AFM has been utilized to study the morphology of these films as a function of annealing temperature at the nanoscale. The optical properties of these films, such as the transmittance, T(λ), and reflectance, R(λ), have been studied as a function of annealing temperature. The optical constants, such as optical energy gap, width of the band tails of the localized states, refractive index, oscillatory energy, dispersion energy, real and imaginary parts of both dielectric constant and optical conductivity have been found to be affected by changing the annealing temperature of the films.展开更多
Fluorinated amorphous hydrogenated a-C∶F∶H carbon thin films were deposited using radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) reactor with CF4 and CH4 as source gases and were annealed in a...Fluorinated amorphous hydrogenated a-C∶F∶H carbon thin films were deposited using radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) reactor with CF4 and CH4 as source gases and were annealed in a N2 atmosphere. The properties of these films were evaluated by FTIR spectrometry, UV-VIS spectrophotometry and single-wavelength spectroscopic ellipsometry. A correspondence relativity connection between the deposition rate and technology was found. The chemical bonding structures and the content of CHx and CFx in the films are transformed and the optical band gap decreases monotonically with increasing temperature after annealing. The dielectric constant is increased with decreasing content of F in the films and the optical band gap is decreased with decreasing the content of H in the film.展开更多
The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 ℃. This paper is to present a new approach to th...The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 ℃. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of A1, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of A1, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.展开更多
文摘The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.
基金The project supported by the National Nature Science Foundation of China (No. 10305008)
文摘Using CH4 and CF4 precursor gases, amorphous fluorinated hydrocarbon (a-C:F:H) films were prepared with the method of microwave electronic cyclotron resonant (ECR) plasma chemical vapor deposition. Deposition rate of the film firstly increases and then decreases with variable flow ratios R {[CF4]/([CF4] + [CH4]} due to the competition between deposition and etching process. Results from Fourier-transform infrared transmission spectroscopy of these films show that C-F bond configuration in a-C:F:H films evolves with the variable gas flow ratios R. The locations of the C-F peaks in IR spectra shift to higher frequency with the increase of R, and finally the structure in films with R >75% takes on a PTFE-like structure, which mainly consists of -CF2- chain. The change of optical band gap Eg deduced by a Tauc plot with R is also discussed.
文摘Cadmium tin oxide Cd2SnO4 thin films with a thickness of 228.5 nm were prepared by RF magnetron sputtering technique on glass substrates at room temperature. AFM has been utilized to study the morphology of these films as a function of annealing temperature at the nanoscale. The optical properties of these films, such as the transmittance, T(λ), and reflectance, R(λ), have been studied as a function of annealing temperature. The optical constants, such as optical energy gap, width of the band tails of the localized states, refractive index, oscillatory energy, dispersion energy, real and imaginary parts of both dielectric constant and optical conductivity have been found to be affected by changing the annealing temperature of the films.
文摘Fluorinated amorphous hydrogenated a-C∶F∶H carbon thin films were deposited using radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) reactor with CF4 and CH4 as source gases and were annealed in a N2 atmosphere. The properties of these films were evaluated by FTIR spectrometry, UV-VIS spectrophotometry and single-wavelength spectroscopic ellipsometry. A correspondence relativity connection between the deposition rate and technology was found. The chemical bonding structures and the content of CHx and CFx in the films are transformed and the optical band gap decreases monotonically with increasing temperature after annealing. The dielectric constant is increased with decreasing content of F in the films and the optical band gap is decreased with decreasing the content of H in the film.
文摘The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 ℃. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of A1, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of A1, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.