Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and f...Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.展开更多
Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuit...Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.展开更多
The fabrication of microlens based on a novel photopolymerizable formulation, consisting of acrylated hyperbranched polyisophthalate (HPIPA), 1,6-hexanediol diacrylate (HDDA) and Irgacure 184, with the free flow techn...The fabrication of microlens based on a novel photopolymerizable formulation, consisting of acrylated hyperbranched polyisophthalate (HPIPA), 1,6-hexanediol diacrylate (HDDA) and Irgacure 184, with the free flow technique was presented. The good focalization and low chromatism of the fabricated microlens were obtained with scanning near-field optical microscope and measuring the optical transfer function versus spatial frequency, respectively. The positive effects of good compatibility with acrylated monomers and a low shrinkage degree for HPIPA on focalization have also been described. The further research work about the fabrication of microlens with acrylated hyperbranched polyisophthalate is in progress.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61177089,61227014,and 60978047)
文摘Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.
基金Project supported by National Key R&D Program of China(Grant No.2017YFA0303800)National Natural Science Foundation of China(Grant No.61575218)Defense Industrial Technology Development Program,China(Grant No.JCKY201601C006)
文摘Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.
文摘The fabrication of microlens based on a novel photopolymerizable formulation, consisting of acrylated hyperbranched polyisophthalate (HPIPA), 1,6-hexanediol diacrylate (HDDA) and Irgacure 184, with the free flow technique was presented. The good focalization and low chromatism of the fabricated microlens were obtained with scanning near-field optical microscope and measuring the optical transfer function versus spatial frequency, respectively. The positive effects of good compatibility with acrylated monomers and a low shrinkage degree for HPIPA on focalization have also been described. The further research work about the fabrication of microlens with acrylated hyperbranched polyisophthalate is in progress.