Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic prin...Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.展开更多
Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short ti...Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.展开更多
A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the lat...A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the latent heat of phase transformation and the temperature dependence of thermal properties of materials were considered. The heat source was considered as a moving Gaussian heat flux with a constant velocity. Three-dimension unequally spatial grid explicit finite difference equations, alternating direction implicit finite difference equations and implicit finite difference equations were deduced respectively. Three programs to calculate the temperature field were developed using Fortran language. The transient temperature fields of C22, 42CrMo, C60 steel samples during laser transformation hardening process were calculated using these programs, and the widths and depths of laser transformation hardening zones were also predicted. C22, 42CrMo, C60 steel samples were treated by CO_2 laser,the widths and depths of laser transformation hardening zones of these samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.展开更多
A Two-dimensional transient heat transfer model for laser transformation hardening process of cylindrical bodies has been developed. The surface heat loss of the sample, the latent heat of phase transformation, and th...A Two-dimensional transient heat transfer model for laser transformation hardening process of cylindrical bodies has been developed. The surface heat loss of the sample, the latent heat of phase transformation, and the temperature dependence of thermal properties of material were considered. The laser heat source was considered as a moving Gaussian heat flux with a constant velocity. Finite element method was used to calculate the transient temperature field. A program to calculate the temperature field was developed using FORTRAN language. The transient temperature field, the width and depth of laser transformation hardening zone of 42CrMo steel sample during laser transformation hardening process was calculated. The widths and depths of laser transformation hardening zones of 42CrMo steel samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.展开更多
A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformatio...A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.展开更多
According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathy...According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.展开更多
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a...The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.展开更多
In this paper,a thermal elastic-plastic 2-D finite element model of stress generation during laser transformation hardening process was developed. In this model, the mechanical properties of the material, Young's...In this paper,a thermal elastic-plastic 2-D finite element model of stress generation during laser transformation hardening process was developed. In this model, the mechanical properties of the material, Young's modules E, Poisson's ratio v, yield limit s, and thermal expansion coefficient α, are all change with temperature. The equivalent expansion method was used to deal with the problem with phase transformation. Based on this model, a program to calculate the residual stress field was developed using FORTRAN language. The residual stress fields in CO2 laser transformation hardened MoCu nodular iron were calculated. The calculated results showed that in the transformation hardened zone, the residual stress state is compress,whereas adjacent to this zone the residual stress state is tensile, and there is a tensile stress peak close to the transformation hardened zone. To verify this model, the residual stress fields were measured using X-ray diffraction method. The calculated results of residual stress fields are in good agreement with the experimental results.展开更多
A thermal elastic-plastic Two-D finite element model to calculate the transient stress field during laser transformation hardening process was developed in this paper. The mechanical properties of material, Young’s m...A thermal elastic-plastic Two-D finite element model to calculate the transient stress field during laser transformation hardening process was developed in this paper. The mechanical properties of material, Young’s module E, Poisson’s ratio v, yield limit s2 and thermal expansion coefficient a are all considered to change with temperature. The equivalent expansion method was used to deal with the problem with phase transformation. A program to calculate the transient stress field was developed using FORTRAN language. The transient and residual stress fields during CO2 laser transformation hardening process of MoCu nodular iron were calculated. The residual stress fields were measured using X-ray diffraction method. The calculated residual stress field of laser transformation hardened MoCu nodular iron is in good agreement with the experimental result.展开更多
A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electri...A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.展开更多
The transformation of the magnetization direction and the magnetic fi eld component is one of the important methods in magnetic data processing and transformation,which can be conducted in both wavenumber and spatial ...The transformation of the magnetization direction and the magnetic fi eld component is one of the important methods in magnetic data processing and transformation,which can be conducted in both wavenumber and spatial domains.The transformation method in the wavenumber domain has simpler processing expression and higher processing effi ciency than in the spatial domain;however,they are unstable at low latitude.In this paper,the conclusion that the sum is 0 of two vertical magnetic fi eld components(magnetization inclinations are also perpendicular)in 2D is used for the 3D transformation of the magnetization direction and the magnetic field component.In addition,the transformation method at low latitudes based on vertical relationship(VMT)is proposed,which is an iterative algorithm that converts the transformation of the magnetization direction and the magnetic field component at the low latitude into the high latitude.This method restrains the instability of transformation of constant and variable magnetization direction and magnetic fi eld components in low latitudes.The accuracy,stability,and practicality are verifi ed from synthetic models and real data.展开更多
Taking Fe-C binary alloy as an example,based on the multi-phase field model,the nucleation and growth ofδphase,peritectic reaction,peritectic transformation,and the growth of subsequent austenite are simulated.Effect...Taking Fe-C binary alloy as an example,based on the multi-phase field model,the nucleation and growth ofδphase,peritectic reaction,peritectic transformation,and the growth of subsequent austenite are simulated.Effects of the nucleation site of austenite on the peritectic reaction rate and the starting time of the peritectic transformation were studied.The simulation results show that theγphase,as a shell,surrounds theδphase and grows rapidly when the peritectic reaction occurs between the dendriticδgrains,and a layer ofγphase shell is formed aroundδphase after the peritectic reaction.After theδphase is surrounded byγphase completely,the membrane shell separates the L phase from theδphase,so that the phase transfers from peritectic reaction to peritectic transformation.During the peritectic transformation,since the solute diffusion coefficient of the liquid phase is much greater than that of the solid phase,the average growth rate of austenite in the liquid phase is visibly higher than that of theδphase.The peritectic reaction rate is related to the curvature of the nucleation site of theγphase on theδphase grains.The peritectic reaction rate at the large curvatures is faster than that at small curvatures.展开更多
The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morpho...The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morphology of the transformed microstructures and increases the A3 and A1 temperature. In a magnetic field of 30T, the A1 temperature increases by about 37.1℃ for Fe-0.8C, the A3 temperature for pure Fe increases by about 33.1℃. The measured transformation temperature data are not consistent with calculation results using Weiss molecular field theory. Ferrite grains are elongated and aligned along the direction of magnetic field in Fe-0.4C and Fe-0.6C alloys by ferrite transformation, but elongated and aligned structure was not found in pure Fe, Fe-0.05C alloy and Fe-1.5Mn-0.11C-0.1V alloy.展开更多
Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field...Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at Eo = 2.6 V/μm, attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/#m. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron mi- croscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.
文摘Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.
文摘Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.
文摘A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the latent heat of phase transformation and the temperature dependence of thermal properties of materials were considered. The heat source was considered as a moving Gaussian heat flux with a constant velocity. Three-dimension unequally spatial grid explicit finite difference equations, alternating direction implicit finite difference equations and implicit finite difference equations were deduced respectively. Three programs to calculate the temperature field were developed using Fortran language. The transient temperature fields of C22, 42CrMo, C60 steel samples during laser transformation hardening process were calculated using these programs, and the widths and depths of laser transformation hardening zones were also predicted. C22, 42CrMo, C60 steel samples were treated by CO_2 laser,the widths and depths of laser transformation hardening zones of these samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.
文摘A Two-dimensional transient heat transfer model for laser transformation hardening process of cylindrical bodies has been developed. The surface heat loss of the sample, the latent heat of phase transformation, and the temperature dependence of thermal properties of material were considered. The laser heat source was considered as a moving Gaussian heat flux with a constant velocity. Finite element method was used to calculate the transient temperature field. A program to calculate the temperature field was developed using FORTRAN language. The transient temperature field, the width and depth of laser transformation hardening zone of 42CrMo steel sample during laser transformation hardening process was calculated. The widths and depths of laser transformation hardening zones of 42CrMo steel samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.
文摘A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.
基金supported by the Ph.D. Programs Foundation of the Ministry of Education of China (Grant No.20070294026)
文摘According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.
基金Project supported by the DST-FIST Program for Higher Education Institutions of India(No. SR/FST/MS-I/2018/23(C))。
文摘The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.
文摘In this paper,a thermal elastic-plastic 2-D finite element model of stress generation during laser transformation hardening process was developed. In this model, the mechanical properties of the material, Young's modules E, Poisson's ratio v, yield limit s, and thermal expansion coefficient α, are all change with temperature. The equivalent expansion method was used to deal with the problem with phase transformation. Based on this model, a program to calculate the residual stress field was developed using FORTRAN language. The residual stress fields in CO2 laser transformation hardened MoCu nodular iron were calculated. The calculated results showed that in the transformation hardened zone, the residual stress state is compress,whereas adjacent to this zone the residual stress state is tensile, and there is a tensile stress peak close to the transformation hardened zone. To verify this model, the residual stress fields were measured using X-ray diffraction method. The calculated results of residual stress fields are in good agreement with the experimental results.
文摘A thermal elastic-plastic Two-D finite element model to calculate the transient stress field during laser transformation hardening process was developed in this paper. The mechanical properties of material, Young’s module E, Poisson’s ratio v, yield limit s2 and thermal expansion coefficient a are all considered to change with temperature. The equivalent expansion method was used to deal with the problem with phase transformation. A program to calculate the transient stress field was developed using FORTRAN language. The transient and residual stress fields during CO2 laser transformation hardening process of MoCu nodular iron were calculated. The residual stress fields were measured using X-ray diffraction method. The calculated residual stress field of laser transformation hardened MoCu nodular iron is in good agreement with the experimental result.
基金Project supported by the National Natural Science Foundation of China(Grant No.61404110)the National Higher-education Institution General Research and Development Project,China(Grant No.2682014CX097)
文摘A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.
基金supported by the subject “Study on the Comprehensive Processing and Interpretation Method and Software Development for Aerial Geophysics (No. 2017YFC0602202)” from National major Research and Development Project of China (No. 2017YFC0602200)。
文摘The transformation of the magnetization direction and the magnetic fi eld component is one of the important methods in magnetic data processing and transformation,which can be conducted in both wavenumber and spatial domains.The transformation method in the wavenumber domain has simpler processing expression and higher processing effi ciency than in the spatial domain;however,they are unstable at low latitude.In this paper,the conclusion that the sum is 0 of two vertical magnetic fi eld components(magnetization inclinations are also perpendicular)in 2D is used for the 3D transformation of the magnetization direction and the magnetic field component.In addition,the transformation method at low latitudes based on vertical relationship(VMT)is proposed,which is an iterative algorithm that converts the transformation of the magnetization direction and the magnetic field component at the low latitude into the high latitude.This method restrains the instability of transformation of constant and variable magnetization direction and magnetic fi eld components in low latitudes.The accuracy,stability,and practicality are verifi ed from synthetic models and real data.
基金the National Natural Science Foundation of China(Grant Nos.:11504149,51661020)Natural Science Foundation of Gansu Province of China(Grant No.:18JR3RA147).
文摘Taking Fe-C binary alloy as an example,based on the multi-phase field model,the nucleation and growth ofδphase,peritectic reaction,peritectic transformation,and the growth of subsequent austenite are simulated.Effects of the nucleation site of austenite on the peritectic reaction rate and the starting time of the peritectic transformation were studied.The simulation results show that theγphase,as a shell,surrounds theδphase and grows rapidly when the peritectic reaction occurs between the dendriticδgrains,and a layer ofγphase shell is formed aroundδphase after the peritectic reaction.After theδphase is surrounded byγphase completely,the membrane shell separates the L phase from theδphase,so that the phase transfers from peritectic reaction to peritectic transformation.During the peritectic transformation,since the solute diffusion coefficient of the liquid phase is much greater than that of the solid phase,the average growth rate of austenite in the liquid phase is visibly higher than that of theδphase.The peritectic reaction rate is related to the curvature of the nucleation site of theγphase on theδphase grains.The peritectic reaction rate at the large curvatures is faster than that at small curvatures.
文摘The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morphology of the transformed microstructures and increases the A3 and A1 temperature. In a magnetic field of 30T, the A1 temperature increases by about 37.1℃ for Fe-0.8C, the A3 temperature for pure Fe increases by about 33.1℃. The measured transformation temperature data are not consistent with calculation results using Weiss molecular field theory. Ferrite grains are elongated and aligned along the direction of magnetic field in Fe-0.4C and Fe-0.6C alloys by ferrite transformation, but elongated and aligned structure was not found in pure Fe, Fe-0.05C alloy and Fe-1.5Mn-0.11C-0.1V alloy.
基金Supported by the National Natural Science Foundation of China under Grant No 11405114the Natural Science Foundation of Shanxi Province under Grant No 2015021065
文摘Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at Eo = 2.6 V/μm, attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/#m. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron mi- croscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation.