GAN生成图像质量评价是指对GAN生成的图像进行评价,判断生成图像的失真度是否影响观察者的信息获取和主观感受.目前,GAN生成图像质量评价算法较少且算法运行效率不高.该文提出一种基于近邻算法的生成图像质量评价(Near-Neighbor based G...GAN生成图像质量评价是指对GAN生成的图像进行评价,判断生成图像的失真度是否影响观察者的信息获取和主观感受.目前,GAN生成图像质量评价算法较少且算法运行效率不高.该文提出一种基于近邻算法的生成图像质量评价(Near-Neighbor based Generated Image Quality Assessment,NN-GIQA)算法,实现对GAN生成图像的自动、客观、高效评价.首先,基于ANN算法获取生成图像的近邻构成相似图像候选池,缩小生成图像对比范围;然后,基于KNN算法在相似图像候选池中获取与生成图像最相似的K个真实图像得到生成图像质量分数;最后,评价多个经典GAN模型在多个经典数据集上获取的生成图像的质量.实验结果表明本文方法有效提高了GAN生成图像质量评价的效率和准确性,运行时间仅为其他方法的1/9~1/28,其评价结果和人类主观评价结果的一致性达到80%以上,符合人类视觉感知.展开更多