Near-bottom currents play important roles in the formation and dynamics of deep-water sedimentary systems.This study examined the characteristics and temporal variations of near-bottom currents, especially the tidal c...Near-bottom currents play important roles in the formation and dynamics of deep-water sedimentary systems.This study examined the characteristics and temporal variations of near-bottom currents, especially the tidal components, based on two campaigns(2014 and 2016) of in situ observations conducted southeast of the Dongsha Island in the South China Sea. Results demonstrated near-bottom currents are dominated by tidal currents, the variance of which could account for ~70% of the total current variance. Diurnal tidal currents were found stronger than semidiurnal currents for both barotropic and baroclinic components. The diurnal tidal currents were found polarized with predominantly clockwise-rotating constituents, whereas the clockwise and counterclockwise constituents were found comparable for semidiurnal tidal currents. It was established that diurnal tidal currents could induce strong current shear. Baroclinic tidal currents showed pronounced seasonal variation with large magnitude in winter and summer and weak magnitude in spring and autumn in 2014. The coherent components accounted for ~65% and ~50% of the diurnal and semidiurnal tidal current variances,respectively. The proportions of the coherent and incoherent components changed little in different seasons. In addition to tidal currents, it was determined that the passing of mesoscale eddies could induce strong nearbottom currents that have considerable influence on the deep circulation.展开更多
The East China Sea(ECS) has a high suspended-sediment concentration because of the influence of the Changjiang River,indicated by high turbidity in the water.Considering the islands off the coast and the complex topog...The East China Sea(ECS) has a high suspended-sediment concentration because of the influence of the Changjiang River,indicated by high turbidity in the water.Considering the islands off the coast and the complex topography,and the strong influence of tides and wind,the coast off the ECS is a typical region with strong oceanic mixing processes.The changes in the dynamic processes near the bottom play an important role in the control of water turbidity.The turbulent kinetic energy dissipation rate(ε) is a parameter that shows the strength of ocean mixing.This is estimated based on a structure method using current velocity that is measured by a high-frequency Acoustic Doppler Current Profiler(ADCP) from a seafloor observatory in the ECS.The results indicate strong ocean mixing processes with a mean e value of 5.7×10^(-5) W/kg and distinct tidal variations in the dissipation rate.Conversely,the variation of the water turbidity leads to changes in the water dynamical structure near the bottom.Comparing the dissipation rate with the turbidity near the bottom boundary layer,we find that the high turbidity mimics strong ocean mixing.展开更多
The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutiv...The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons(May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia(ECPM),south of the South China Sea(SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal(O_1 and K_1) and semidiurnal(M_2) tidal currents. The spectral density of residual currents(detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency(K_1) and small peaks at the semidiurnal tidal frequency(M_2)indicating the existence of internal tides. The result of the horizontal kinetic energy(HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux(16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July.展开更多
The seafloor observation system is becoming an important infrastructure for marine research because it is transforming oceanic research from temporal investigation to long term observation.The East China Sea coastal s...The seafloor observation system is becoming an important infrastructure for marine research because it is transforming oceanic research from temporal investigation to long term observation.The East China Sea coastal seafloor observatory,located between 30°31′44″N,122°15′12″E and 30°31′34″N,122°14′40″E,is constructed near the Xiaoqushan Island outside the Hangzhou Bay on the inner continental shelf of the East China Sea.The observatory is connected by a submarine optical fiber composite power cable that is more than one kilometer long and consists of a special junction box that transmits power and communication signals to different instruments.The special junction box has a variety of waterproof plugs and connects to three different instruments installed in a trawl preventer.The submarine optical fiber composite power cable is landed on the platform by The East China Sea Branch,State Oceanic Administration and the power is continuously supplied by the solar panels and solar battery on the top of the platform.The real time data are directly sent through the cable to the platform and are transmitted by CDMA wireless to the receiver at the State Key Laboratory of Marine Geology of Tongji University.Measurements at the observatory have been taken since April 20,2009 after installation and the results have been interpreted.The characteristics of the near bottom boundary are constrained by a sediment suspension model using portion of the observed data.In particular,discussion is provided on the sea surface height anomaly at Xiaoqushan Island influenced by the tsunami driven by the 2010 Earthquake in Chile.The successful establishment of the coastal seafloor observatory is the first step toward future development of seafloor observation systems in China.It not only accumulates experiences in technology and engineering,but also paves the way for performing important oceanic research using the long term continuous observation platform.展开更多
基金The National Key Research and Development Program of China under contract No.2017YFC1404201the National Natural Science Foundation of China under contract Nos 41706035 and 41876029+2 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405the Laboratory for Regional Oceanography and Numerical Modeling,Qingdao National Laboratory for Marine Science and Technology under contract No.2017A01the China Postdoctoral Science Foundation under contract No.2017M622111
文摘Near-bottom currents play important roles in the formation and dynamics of deep-water sedimentary systems.This study examined the characteristics and temporal variations of near-bottom currents, especially the tidal components, based on two campaigns(2014 and 2016) of in situ observations conducted southeast of the Dongsha Island in the South China Sea. Results demonstrated near-bottom currents are dominated by tidal currents, the variance of which could account for ~70% of the total current variance. Diurnal tidal currents were found stronger than semidiurnal currents for both barotropic and baroclinic components. The diurnal tidal currents were found polarized with predominantly clockwise-rotating constituents, whereas the clockwise and counterclockwise constituents were found comparable for semidiurnal tidal currents. It was established that diurnal tidal currents could induce strong current shear. Baroclinic tidal currents showed pronounced seasonal variation with large magnitude in winter and summer and weak magnitude in spring and autumn in 2014. The coherent components accounted for ~65% and ~50% of the diurnal and semidiurnal tidal current variances,respectively. The proportions of the coherent and incoherent components changed little in different seasons. In addition to tidal currents, it was determined that the passing of mesoscale eddies could induce strong nearbottom currents that have considerable influence on the deep circulation.
基金Supported by the National Natural Science Foundation of China(Nos.41106013,41576005)the Shanghai Committee of Science and Technology(No.06DZ12012)
文摘The East China Sea(ECS) has a high suspended-sediment concentration because of the influence of the Changjiang River,indicated by high turbidity in the water.Considering the islands off the coast and the complex topography,and the strong influence of tides and wind,the coast off the ECS is a typical region with strong oceanic mixing processes.The changes in the dynamic processes near the bottom play an important role in the control of water turbidity.The turbulent kinetic energy dissipation rate(ε) is a parameter that shows the strength of ocean mixing.This is estimated based on a structure method using current velocity that is measured by a high-frequency Acoustic Doppler Current Profiler(ADCP) from a seafloor observatory in the ECS.The results indicate strong ocean mixing processes with a mean e value of 5.7×10^(-5) W/kg and distinct tidal variations in the dissipation rate.Conversely,the variation of the water turbidity leads to changes in the water dynamical structure near the bottom.Comparing the dissipation rate with the turbidity near the bottom boundary layer,we find that the high turbidity mimics strong ocean mixing.
基金The Higher Institutional Centre of Excellent Universiti Malaysia Terengganu under contract No.TJ66928the Malaysia Coastal Observation Network Project under the Institute of Oceanography and Environment,Universiti Malaysia Terengganu of Malaysia
文摘The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons(May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia(ECPM),south of the South China Sea(SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal(O_1 and K_1) and semidiurnal(M_2) tidal currents. The spectral density of residual currents(detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency(K_1) and small peaks at the semidiurnal tidal frequency(M_2)indicating the existence of internal tides. The result of the horizontal kinetic energy(HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux(16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July.
文摘The seafloor observation system is becoming an important infrastructure for marine research because it is transforming oceanic research from temporal investigation to long term observation.The East China Sea coastal seafloor observatory,located between 30°31′44″N,122°15′12″E and 30°31′34″N,122°14′40″E,is constructed near the Xiaoqushan Island outside the Hangzhou Bay on the inner continental shelf of the East China Sea.The observatory is connected by a submarine optical fiber composite power cable that is more than one kilometer long and consists of a special junction box that transmits power and communication signals to different instruments.The special junction box has a variety of waterproof plugs and connects to three different instruments installed in a trawl preventer.The submarine optical fiber composite power cable is landed on the platform by The East China Sea Branch,State Oceanic Administration and the power is continuously supplied by the solar panels and solar battery on the top of the platform.The real time data are directly sent through the cable to the platform and are transmitted by CDMA wireless to the receiver at the State Key Laboratory of Marine Geology of Tongji University.Measurements at the observatory have been taken since April 20,2009 after installation and the results have been interpreted.The characteristics of the near bottom boundary are constrained by a sediment suspension model using portion of the observed data.In particular,discussion is provided on the sea surface height anomaly at Xiaoqushan Island influenced by the tsunami driven by the 2010 Earthquake in Chile.The successful establishment of the coastal seafloor observatory is the first step toward future development of seafloor observation systems in China.It not only accumulates experiences in technology and engineering,but also paves the way for performing important oceanic research using the long term continuous observation platform.