期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The September 16, 2015 Mw 8.3 Illapel, Chile Earthquake: characteristics of tsunami wave from near-field to far-field 被引量:2
1
作者 REN Zhiyuan YUAN Ye +3 位作者 WANG Peitao FAN Tingting WANG Juncheng HOU Jingming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第5期73-82,共10页
On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presen... On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield. 展开更多
关键词 2015 Illapel earthquake tsunami observation numerical modeling far-field NEAR-FIELD
下载PDF
GRACE detection of the medium-to far-field coseismic gravity changes caused by the 2004 Mw9.3 Sumatra-Andaman earthquake 被引量:1
2
作者 Jin Li1,2,3 and Wenbin Shen1,3,4, 1 Department of Geophysics, School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China 2 Key Laboratory of Geodynamic Geodesy of Chinese Academy, Wuhan 430077, China 3 Key Laboratory of Geospace Environment and Geodesy (Ministry of Education), Wuhan University, Wuhan 430079, China 4 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan 430079, China 《Earthquake Science》 CSCD 2012年第3期235-240,共6页
Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-fie... Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-field gravity effects, this study provides the results from the medium- to far-field gravity changes caused by the 2004 Sumatra-Andaman earthquake that are recorded within GRACE monthly solutions. Utilizing a spherical-earth dislocation model we documented that large-scale signals predominate in the global field of the coseismic gravity changes caused by the earthquake. After removing the near-field effects, the coseismic gravity changes show a negative anomaly feature with an average magnitude of -0.18×10-8 m·s-2 in the region ranging ~40° from the epicenter, which is considered as the 'medium ffield' in this study. From the GRACE data released by Center for Space Research from August 2002 to December 2008, we retrieved the large-scale gravity changes smoothed with 3 000 km Gaussian ffilter. The results show that the coseismic gravity changes detected by GRACE in the medium field have an average of (-0.20±0.06)×10-8 m·s-2, which agrees with the model prediction. The detection confirms that GRACE is sensitive to large-scale medium-field coseismic gravitational effects of mega earthquakes, and also validates the spherical-earth dislocation model in the medium field from the perspective of satellite gravimetry. 展开更多
关键词 GRACE medium-to far-field coseismic gravity change 2004 Sumatra-Andaman earthquake spherical-Earth dislocation model
下载PDF
Seismic Analysis of Reinforced Concrete Silos under Far-Field and Near-Fault Earthquakes
3
作者 Anwer H.Hussein Hussam K.Risan 《Structural Durability & Health Monitoring》 EI 2022年第3期213-233,共21页
Silos are strategical structures used to stockpile various types of granular materials.They are highly vulnerable to earthquake excitation and have been frequently reported to fail at a higher rate than any other indu... Silos are strategical structures used to stockpile various types of granular materials.They are highly vulnerable to earthquake excitation and have been frequently reported to fail at a higher rate than any other industrial structure.The seismic response of silos within the near-fault region will suffer a complex combination of loadings due to the unique characteristics of the near-fault ground motions;which are usually associated with a large amplitude pulse at the beginning of either the velocity or the displacement time histories.This study aims to numerically evaluate the seismic response of reinforced concrete cylindrical silos under near-fault ground motions(NFGM)and far-field ground motions(FFGM).The assessment investigates the impact of the slenderness ratio and the para-meters’influence on the seismic behavior of reinforced concrete silos.The validity of the Eurocode provisions in the structural safety of silos will also be inspected.The nonlinear time history analysis is carried out through the finite element approach by examining four silos with different slenderness ratios.The concrete damage plas-ticity model is assigned to the silo wall to simulate the nonlinear behavior of concrete in the plastic zone;while,the behavior of the stored material is represented by the Drucker-Prager plastic model.The wall-granular material interaction is considered and defined by coulomb’s friction theory.The results of the near-fault records reveal a growth up to 72.8%in the hoop stress and 160.4%in the vertical stress compared to the far-field earthquakes.Consequently,the seismic response of reinforced concrete silos is highly sensitive to the type of ground motion,and slender silos tend to impose greater structural demand under the NFGM.Additionally,The Eurocode-8 seismic provisions were adequate in the conventional far-field ground motions and less effective in the near-fault zone. 展开更多
关键词 SILOS seismic analysis near-fault earthquake far-field earthquake
下载PDF
Correlation between the tilt anomaly on the vertical pendulum at the Songpan station and the 2021 MS7.4 Maduo earthquake in Qinghai province,China 被引量:1
4
作者 Anfu Niu Zhengyi Yuan +2 位作者 Jin Wei Jing Zhao Wei Yan 《Earthquake Science》 2022年第3期205-212,共8页
Understanding the relationship between precursory deformation anomalies and strong earthquakes is vital for physical earthquake prediction. Six months before the 2021 MS7.4 Maduo earthquake in Qinghai province, China,... Understanding the relationship between precursory deformation anomalies and strong earthquakes is vital for physical earthquake prediction. Six months before the 2021 MS7.4 Maduo earthquake in Qinghai province, China, the vertical pendulum at the Songpan station was observed to tilt southward with a high rate and large amplitude. Studies conducted before the 2021 MS7.4 Maduo earthquake inferred the tilt anomaly to be an earthquake precursor. However, after the earthquake, the relation between the earthquake and the anomaly became controversial, partly because the Songpan station is located at a great distance from the epicenter. In this study, based on the deformation anomaly characteristics, relationship between the seismogenic fault and the fault near the anomaly, and associated quantitative analyses, we concluded that this anomaly may be associated with the 2021 MS7.4 Maduo earthquake. The duration and amplitude of this anomaly matched with the magnitude and epicenter distance of the Maduo earthquake. We have also interpreted the reason why the anomaly occurred near a fault that is obliquely intersected with the seismogenic fault and why the anomaly is located far from the earthquake epicenter. 展开更多
关键词 2021 MS7.4 Maduo earthquake tilt of the vertical pendulum at the Songpan station far-field correlation
下载PDF
Effects of hanging wall and forward directivity in the 1999 Chi-Chi earthquake on inelastic displacement response of structures
5
作者 李爽 谢礼立 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第1期77-84,共8页
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions i... The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these nearfield effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods. 展开更多
关键词 NEAR-FIELD far-field hanging wall footwall forward directivity inelastic displacement performance evaluation Chi-Chi earthquake
下载PDF
Dynamic-Response Analysis of the Branch System of a Utility Tunnel Subjected to Near-Fault and Far-Field Ground Motions in Different Input Mechanisms 被引量:2
6
作者 Yuhang Jin Endong Guo +1 位作者 Houli Wu Peilei Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期167-186,共20页
There are few studies on the dynamic-response mechanism of near-fault and far-field ground motions for large underground structures,especially for the branch joint of a utility tunnel(UT)and its internal pipeline.Base... There are few studies on the dynamic-response mechanism of near-fault and far-field ground motions for large underground structures,especially for the branch joint of a utility tunnel(UT)and its internal pipeline.Based on the theory of a 3D viscous-spring artificial boundary,this paper deduced the equivalent nodal force when a P wave and an SV wave were vertically incident at the same time and transformed the ground motion into an equivalent nodal force using a self-developed MATLAB program,which was applied to an ABAQUS finite element model.Based on near-fault and far-field groundmotions obtained fromtheNGA-WEST2 database,the dynamic responses of a utility tunnel and its internal pipeline in different inputmechanisms of near-fault and far-field groundmotions were compared according to bidirectional input and tridirectional input,respectively.Generally,the damage to the utility tunnel caused by the near-fault ground motion was stronger than that caused by the far-field ground motion,and the vertical ground motion of near-fault ground motion aggravated the damage to the utility tunnel.In addition,the joint dislocation of the upper and lower three-way joints of the pipeline in the branch systemunder the seismic action led to local stress concentrations.In general,the branch system of the utility tunnel had good seismic performance to resist the designed earthquake action and protect the internal pipeline fromdamage during the rare earthquake. 展开更多
关键词 Dynamic response utility tunnel near-fault ground motion far-field ground motion earthquake input seismic design
下载PDF
Behaviors of overlying strata in extra-thick coal seams using top-coalcaving method 被引量:6
7
作者 Bin Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期238-247,共10页
Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-co... Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method. 展开更多
关键词 Extra-thick coal seam Datong mining area Large-space structure near-and far-field strata Strata behavior Key strata
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部