To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on...To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on the principle of surface volume balance,then the recovery prediction method of volatile oil reservoir considering the influence of condensate content in released solution gas and the correction method of multiple degassing experiments data are established.Taking three typical kinds of crude oil(black oil,medium-weak volatile oil,strong volatile oil)as examples,the new improved method is used to simulate constant volume depletion experiments based on the corrected data of multiple degassing experiment to verify the reliability of the modified method.By using"experimental data and traditional method","corrected data and traditional method"and"corrected data and modified method",recovery factors of these three typical kinds of oil are calculated respectively.The source of parameters and the calculation methods have little effect on the recovery of typical black oil.However,with the increase of crude oil volatility,the oil recovery will be seriously underestimated by using experimental data or traditional method.The combination of"corrected data and modified method"considers the influence of condensate in gas phase in both experimental parameters and calculation method,and has good applicability to typical black oil and volatile oil.The strong shrinkage of volatile oil makes more"liquid oil"convert to"gaseous oil",so volatile oil reservoir can reach very high oil recovery by depletion drive.展开更多
Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the ...Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the timing and strategy of water injection were put forward. The water-cut rising shapes of producers after water breakthrough can be divided into three types, and their water-cut rising mechanism is mainly controlled by reservoir connectivity. For the producers which directly connect with injectors in the single-phase sand body of the single-phase channel or lobe with good reservoir connectivity, the water-cut rising curve is "sub-convex". For the producers which connect with injectors through sand bodies developed in multi-phases with good inner sand connectivity but poorer physical property and connectivity at the overlapping parts of sands, the response to water injection is slow and the water-cut rising curve is "sub-concave". For the producers which connect with injectors through multi-phase sand bodies with reservoir physical properties, connectivity in between the former two and characteristics of both direct connection and overlapping connection, the response to water injection is slightly slower and the water-cut rising curve is "sub-S". Based on ratio relationship of oil and water relative permeability, a new model of water cut rising was established. Through the fitting analysis of actual production data, the optimal timing and corresponding technology for water injection after water breakthrough were put forward. Composite channel and lobe reservoirs can adopt water injection strategies concentrating on improving the vertical sweep efficiency and areal sweep efficiency respectively. This technology has worked well in the AKPO oilfield and can guide the development of similar oilfields.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05027)。
文摘To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on the principle of surface volume balance,then the recovery prediction method of volatile oil reservoir considering the influence of condensate content in released solution gas and the correction method of multiple degassing experiments data are established.Taking three typical kinds of crude oil(black oil,medium-weak volatile oil,strong volatile oil)as examples,the new improved method is used to simulate constant volume depletion experiments based on the corrected data of multiple degassing experiment to verify the reliability of the modified method.By using"experimental data and traditional method","corrected data and traditional method"and"corrected data and modified method",recovery factors of these three typical kinds of oil are calculated respectively.The source of parameters and the calculation methods have little effect on the recovery of typical black oil.However,with the increase of crude oil volatility,the oil recovery will be seriously underestimated by using experimental data or traditional method.The combination of"corrected data and modified method"considers the influence of condensate in gas phase in both experimental parameters and calculation method,and has good applicability to typical black oil and volatile oil.The strong shrinkage of volatile oil makes more"liquid oil"convert to"gaseous oil",so volatile oil reservoir can reach very high oil recovery by depletion drive.
基金Supported by the China National Science and Technology Major Project(2011ZX05030-005)
文摘Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the timing and strategy of water injection were put forward. The water-cut rising shapes of producers after water breakthrough can be divided into three types, and their water-cut rising mechanism is mainly controlled by reservoir connectivity. For the producers which directly connect with injectors in the single-phase sand body of the single-phase channel or lobe with good reservoir connectivity, the water-cut rising curve is "sub-convex". For the producers which connect with injectors through sand bodies developed in multi-phases with good inner sand connectivity but poorer physical property and connectivity at the overlapping parts of sands, the response to water injection is slow and the water-cut rising curve is "sub-concave". For the producers which connect with injectors through multi-phase sand bodies with reservoir physical properties, connectivity in between the former two and characteristics of both direct connection and overlapping connection, the response to water injection is slightly slower and the water-cut rising curve is "sub-S". Based on ratio relationship of oil and water relative permeability, a new model of water cut rising was established. Through the fitting analysis of actual production data, the optimal timing and corresponding technology for water injection after water breakthrough were put forward. Composite channel and lobe reservoirs can adopt water injection strategies concentrating on improving the vertical sweep efficiency and areal sweep efficiency respectively. This technology has worked well in the AKPO oilfield and can guide the development of similar oilfields.