期刊文献+
共找到22,680篇文章
< 1 2 250 >
每页显示 20 50 100
Database Search Behaviors: Insight from a Survey of Information Retrieval Practices
1
作者 Babita Trivedi Brijender Dahiya +2 位作者 Anjali Maan Rajesh Giri Vinod Prasad 《Intelligent Information Management》 2024年第5期195-218,共24页
This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, catego... This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, categorized by their discipline, schooling background, internet usage, and information retrieval preferences. Key findings indicate that females are more likely to plan their searches in advance and prefer structured methods of information retrieval, such as using library portals and leading university websites. Males, however, tend to use web search engines and self-archiving methods more frequently. This analysis provides valuable insights for educational institutions and libraries to optimize their resources and services based on user behavior patterns. 展开更多
关键词 Information retrieval Database Search User Behavior Patterns
下载PDF
A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI:Development and Verification over Asia
2
作者 Disong Fu Hongrong Shi +9 位作者 Christian AGueymard Dazhi Yang Yu Zheng Huizheng Che Xuehua Fan Xinlei Han Lin Gao Jianchun Bian Minzheng Duan Xiangao Xia 《Engineering》 SCIE EI CAS CSCD 2024年第7期164-174,共11页
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b... The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events. 展开更多
关键词 Aerosol optical depth retrieval algorithm Deep learning Transfer learning Advanced Geosynchronous Radiation IMAGER
下载PDF
Importance-aware 3D volume visualization for medical content-based image retrieval-a preliminary study
3
作者 Mingjian LI Younhyun JUNG +1 位作者 Michael FULHAM Jinman KIM 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期71-81,共11页
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di... Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset. 展开更多
关键词 Volume visualization DVR Medical CBIR retrieval Medical images
下载PDF
Orbit Weighting Scheme in the Context of Vector Space Information Retrieval
4
作者 Ahmad Ababneh Yousef Sanjalawe +2 位作者 Salam Fraihat Salam Al-E’mari Hamzah Alqudah 《Computers, Materials & Continua》 SCIE EI 2024年第7期1347-1379,共33页
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem... This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies. 展开更多
关键词 Information retrieval orbit weighting scheme semantic text analysis Tf-Idf weighting scheme vector space model
下载PDF
A Survey of Crime Scene Investigation Image Retrieval Using Deep Learning
5
作者 Ying Liu Aodong Zhou +1 位作者 Jize Xue Zhijie Xu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期271-286,共16页
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep... Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field. 展开更多
关键词 crime scene investigation(CSI)image image retrieval deep learning
下载PDF
Comparison between ozonesonde measurements and satellite retrievals over Beijing,China 被引量:2
6
作者 Jinqiang Zhang Yuejian Xuan +5 位作者 Jianchun Bian Holger Vomel Yunshu Zeng Zhixuan Bai Dan Li Hongbin Chen 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第1期14-20,共7页
从2013年开始,作者团队使用自主研发电化学原理臭氧探空仪在华北平原北京地区进行每周一次观测.本研究首次使用2013-2019年期间北京地区臭氧探空数据评估Aqua卫星搭载大气红外探测仪(AIRS)和Aura卫星搭载微波临边探测器(MLS)反演垂直臭... 从2013年开始,作者团队使用自主研发电化学原理臭氧探空仪在华北平原北京地区进行每周一次观测.本研究首次使用2013-2019年期间北京地区臭氧探空数据评估Aqua卫星搭载大气红外探测仪(AIRS)和Aura卫星搭载微波临边探测器(MLS)反演垂直臭氧廓线,并对比臭氧探空,AIRS和Aura卫星搭载臭氧监测仪(OMI)臭氧柱总量结果.尽管臭氧探空与卫星反演垂直臭氧廓线在局部高度处差异较大,但整体来说两者较为接近(相对偏差大多<10%).臭氧探空,AIRS和OMI三种仪器测量臭氧柱总量的年变化特征较为一致,其年均臭氧柱总量分别为351.8±18.4 DU,348.8±19.5 DU和336.9±14.2 DU.后续对国内多站点观测数据分析将有助于进一步理解臭氧探空与卫星反演臭氧资料在不同区域的一致性. 展开更多
关键词 臭氧探空 卫星反演 垂直臭氧廓线 臭氧柱总量 华北平原
下载PDF
Region-Aware Fashion Contrastive Learning for Unified Attribute Recognition and Composed Retrieval
7
作者 WANG Kangping ZHAO Mingbo 《Journal of Donghua University(English Edition)》 CAS 2024年第4期405-415,共11页
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me... Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts. 展开更多
关键词 attribute recognition image retrieval contrastive language-image pre-training(CLIP) image text matching transformer
下载PDF
On the Nature of Online Retrieval of Electronic Data
8
作者 WU Yingfei NI Weisi 《The Journal of Human Rights》 2024年第4期876-903,共28页
With the development of information technology,the online retrieval of remote electronic data has become an important method for investigative agencies to collect evidence.In the current normative documents,the online... With the development of information technology,the online retrieval of remote electronic data has become an important method for investigative agencies to collect evidence.In the current normative documents,the online retrieval of electronic data is positioned as a new type of arbitrary investigative measure.However,study of its actual operation has found that the online retrieval of electronic data does not fully comply with the characteristics of arbitrary investigative measures.The root cause is its inaccurately defined nature due to analogy errors,an emphasis on the authenticity of electronic data at the cost of rights protection,insufficient effectiveness of normative documents to break through the boundaries of law,and superficial inconsistency found in the mechanical comparison with the nature of existing investigative measures causes.The nature of electronic data retrieved online should be defined according to different circumstances.The retrieval of electronic data disclosed on the Internet is an arbitrary investigative measure,and following procedural specifications should be sufficient.When investigators conceal their true identities and enter the cyberspace of the suspected crime through a registered account to extract dynamic electronic data for criminal activities,it is essentially a covert investigation in cyberspace,and they should follow the normative requirements for covert investigations.The retrieval of dynamic electronic data from private spaces is a technical investigative measure and should be implemented in accordance with the technical investigative procedures.Retrieval of remote“non-public electronic data involving privacy”is a mandatory investigative measure,and is essentially a search in the virtual space.Therefore,procedural specifications should be set in accordance with the standards of searching. 展开更多
关键词 electronic data online retrieval compulsory investigation SEARCH right to privacy
下载PDF
A Visual Indoor Localization Method Based on Efficient Image Retrieval
9
作者 Mengyan Lyu Xinxin Guo +1 位作者 Kunpeng Zhang Liye Zhang 《Journal of Computer and Communications》 2024年第2期47-66,共20页
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l... The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method. 展开更多
关键词 Visual Indoor Positioning Feature Point Matching Image retrieval Position Calculation Five-Point Method
下载PDF
The Preliminary Design and Implement of Plant Digital Information Retrieval System 被引量:3
10
作者 樊永军 闫伟 +2 位作者 王黎元 杨秀丽 刘学威 《Agricultural Science & Technology》 CAS 2011年第5期751-755,共5页
[Objective] The aim was to set up a plant digital information retrieval system.[Method] Plant digital information retrieval system was designed by combining with Microsoft Visual Basic 6.0 Enterprise Edition database ... [Objective] The aim was to set up a plant digital information retrieval system.[Method] Plant digital information retrieval system was designed by combining with Microsoft Visual Basic 6.0 Enterprise Edition database management system and Structure Query Language.[Result] The system realized electronic management and retrieval of local plant information.The key words of retrieval included family,genus,formal name,Chinese name,Latin,morphological characteristics,habitat,collection people,collection places,and protect class and so on.[Conclusion] It provided reference for these problems of species identification and digital management of herbarium. 展开更多
关键词 Plant digital information retrieval system DATABASE Design and implement
下载PDF
Query Expansion for Chinese Information Retrieval by Using a Decaying Co-occurrence Model 被引量:3
11
作者 贺宏朝 何丕廉 +1 位作者 高剑峰 黄昌宁 《Transactions of Tianjin University》 EI CAS 2002年第3期183-186,共4页
Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and re... Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and realized. The model is an extension of the traditional co-occurrence model by adding a decaying factor that decreases the mutual information when the distance between the terms increases. Experimental results on TREC-9 collections show this query expansion method results in significant improvements over the IR without query expansion. 展开更多
关键词 query expansion Chinese language information retrieval
下载PDF
Concept-based approach for information retrieval 被引量:1
12
作者 吴晨 张全 贾宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期324-329,共6页
A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a d... A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a document. Consequently, a formalized document framework is proposed. The document framework is used to express the meaning of a document with the concepts which are expressed by high semantic importance. The framework consists of two parts: the "domain" information and the "situation & background" information of a document. A document-extracting algorithm and a two-stage smoothing method are also proposed. The quantification of the similarity between the query and the document framework depends on the smoothing method. The experiments on the TREC6 collection demonstrate the feasibility and effectiveness of the proposed approach in information retrieval tasks. The average recall level precision of the model using the proposed approach is about 10% higher than that of traditional ones. 展开更多
关键词 information retrieval CONCEPT semantic knowledge content representation
下载PDF
An Optimal Algorithm for the Retrieval of Chlorophyll,Suspended Sediments and Gelbstoff of Case Ⅱ Waters in the Pearl River Estuary 被引量:3
13
作者 杨锦坤 陈楚群 《Marine Science Bulletin》 CAS 2009年第1期13-23,共11页
An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained ... An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy. 展开更多
关键词 Case Waters Optimal retrieval Ocean Color Constituent Forward Model Atmospheric Correction Pearl River Estuary
下载PDF
Agriculture Information Retrieval System Based on Comprehensive Information Theory 被引量:7
14
作者 吴启明 《Agricultural Science & Technology》 CAS 2010年第2期143-145,共3页
Through analyzing syntactic,semantic,pragmatic information,the retrieval system ACIS based on comprehensive information was established,which could achieve personalized information exaction to guide user s information... Through analyzing syntactic,semantic,pragmatic information,the retrieval system ACIS based on comprehensive information was established,which could achieve personalized information exaction to guide user s information retrieval. 展开更多
关键词 Comprehensive information theory AGRICULTURE Information retrieval system
下载PDF
Application of BP neural network model with fuzzy optimization in retrieval of biomass parameters 被引量:1
15
作者 陈守煜 郭瑜 《Agricultural Science & Technology》 CAS 2005年第2期7-11,共5页
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net... The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound. 展开更多
关键词 ANN BP model biomass parameters retrieval
下载PDF
Sequencing method for dual-shuttle flow-rack automated storage and retrieval systems 被引量:1
16
作者 陈竹西 李小平 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期31-37,共7页
The dual-retrieval (DR) operation sequencing problem in the flow-rack automated storage and retrieval system (AS/RS) is modeled as an assignment problem since it is equivalent to pairing outgoing unit-loads for ea... The dual-retrieval (DR) operation sequencing problem in the flow-rack automated storage and retrieval system (AS/RS) is modeled as an assignment problem since it is equivalent to pairing outgoing unit-loads for each DR operation. A recursion symmetry Hungarian method (RSHM), modified from the Hungarian method, is proposed for generating a DR operation sequence with minimal total travel time, in which symmetry marking is introduced to ensure a feasible solution and recursion is adopted to break the endless loop caused by the symmetry marking. Simulation experiments are conducted to evaluate the cost effectiveness and the performance of the proposed method. Experimental results illustrate that compared to the single-shuttle machine, the dual-shuttle machine can reduce more than 40% of the total travel time of retrieval operations, and the RSHM saves about 5% to 10% of the total travel time of retrieval operations compared to the greedy-based heuristic. 展开更多
关键词 dual-shuttle SEQUENCING flow rack automatedstorage and retrieval system (AS/RS)
下载PDF
Auto-expanded multi query examples technology in content-based image retrieval 被引量:1
17
作者 王小玲 谢康林 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期287-292,共6页
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ... In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms. 展开更多
关键词 content-based image retrieval SEMANTIC multi query examples K-means clustering
下载PDF
Semantic web-based networked manufacturing knowledge retrieval system
18
作者 井浩 张璟 李军怀 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期333-337,共5页
To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of to... To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing. 展开更多
关键词 knowledge retrieval semantic web ONTOLOGY networked manufacturing
下载PDF
A Multi-Tuple Rough Set Approach for Information Retrieval
19
作者 马志锋 邢汉承 郑晓妹 《Journal of Southeast University(English Edition)》 EI CAS 1999年第1期63-68,共6页
How to deal with the imprecise information retrieval has become more and more important in the present information society. An efficient and effective method of information retrieval based on multi tuple rough set is... How to deal with the imprecise information retrieval has become more and more important in the present information society. An efficient and effective method of information retrieval based on multi tuple rough set is discussed in this paper. The new approach is considered as a generalization of the original rough set model for flexible information retrieval. The imprecise query results can be obtained by multi tuple approximations. 展开更多
关键词 multi tuple rough set information retrieval information system
下载PDF
Active learning based on maximizing information gain for content-based image retrieval
20
作者 徐杰 施鹏飞 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期431-435,共5页
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac... This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations. 展开更多
关键词 active learning content-based image retrieval relevance feedback support vector machines similarity measure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部