A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of t...A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).展开更多
3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the...3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.展开更多
Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac...Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of iden...Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of identifying puncture points,a point-cloud search arithmetic method for modified adaptive weighted particle swarm optimization is proposed and used for optimal external axis extraction.According to the characteristics of the multitube drainage tube and the clinical needs of puncture for intracranial hematoma removal,the proposed algorithm can provide an optimal route for a drainage tube for the hematoma,the precise position of the puncture point,and preoperative planning information,which have considerable instructional significance for clinicians.展开更多
With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in o...With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in outdoor hazy environments are prone to color distortion and low contrast;thus,the desired visual effect cannot be achieved and the difficulty of target detection is increased.Artificial intelligence(AI)solutions provide great help for dehazy images,which can automatically identify patterns or monitor the environment.Therefore,we propose a 3D reconstruction method of dehazed images for smart cities based on deep learning.First,we propose a fine transmission image deep convolutional regression network(FT-DCRN)dehazing algorithm that uses fine transmission image and atmospheric light value to compute dehazed image.The DCRN is used to obtain the coarse transmission image,which can not only expand the receptive field of the network but also retain the features to maintain the nonlinearity of the overall network.The fine transmission image is obtained by refining the coarse transmission image using a guided filter.The atmospheric light value is estimated according to the position and brightness of the pixels in the original hazy image.Second,we use the dehazed images generated by the FT-DCRN dehazing algorithm for 3D reconstruction.An advanced relaxed iterative fine matching based on the structure from motion(ARI-SFM)algorithm is proposed.The ARISFM algorithm,which obtains the fine matching corner pairs and reduces the number of iterations,establishes an accurate one-to-one matching corner relationship.The experimental results show that our FT-DCRN dehazing algorithm improves the accuracy compared to other representative algorithms.In addition,the ARI-SFM algorithm guarantees the precision and improves the efficiency.展开更多
As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete...As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete algorithm with the scanning line compensation algorithm,a mathematical model is built.According to the topological relations between several control points on the model surface,the surface of the model is discretized,and a planar triangle sequence is used to describe 3D objects.Finally,the bitmap is enlarged by combining the borrowing compensation based on 3D modeling principle of discrete algorithm with the scanning line compensation algorithm of binary lattice image,thus getting a relatively clear enlarged BMP image.展开更多
In recent years,the three dimensional reconstruction of vascular structures in the field of medical research has been extensively developed.Several studies describe the various numerical methods to numerical modeling ...In recent years,the three dimensional reconstruction of vascular structures in the field of medical research has been extensively developed.Several studies describe the various numerical methods to numerical modeling of vascular structures in near-reality.However,the current approaches remain too expensive in terms of storage capacity.Therefore,it is necessary to find the right balance between the relevance of information and storage space.This article adopts two sets of human retinal blood vessel data in 3D to proceed with data reduction in the first part and then via 3D fractal reconstruction,recreate them in a second part.The results show that the reduction rate obtained is between 66%and 95%as a function of the tolerance rate.Depending on the number of iterations used,the 3D blood vessel model is successful at reconstruction with an average error of 0.19 to 5.73 percent between the original picture and the reconstructed image.展开更多
3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vis...3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model. In this paper, a new algorithm for realistic-looking face reconstruction is presented based on stereo vision. Firstly, a pattern is printed and attached to a planar surface for camera calibration, and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade (PLK) algorithm and local adjustment algorithm, and then 3D coordinates of corners are obtained by 3D reconstruction. Individual face model is generated by the deformation of general 3D model and interpolation of the features. Finally, realistic-looking human face model is obtained after texture mapping and eyes modeling. In addition, some application examples in the field of VR are given. Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.展开更多
基金supported by the National Natural Science Foundation of China(61771369 61775219+5 种基金 61640422)the Fundamental Research Funds for the Central Universities(JB180310)the Equipment Research Program of the Chinese Academy of Sciences(YJKYYQ20180039)the Shaanxi Provincial Key R&D Program(2018SF-409 2018ZDXM-SF-027)the Natural Science Basic Research Plan
文摘A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).
基金supported by The National Key Research and Development Program of China (2021YFC3090304)The Fundamental Research Funds for the Central Universities,China University of Mining and Technology-Beijing (8000150A073).
文摘3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.
基金funded by the Ministry of Science and Higher Education of the Russian Federation as part of the World-Class Research Center Program:Advanced Digital Technologies(Contract No.075-15-2022-311,dated 20.04.2022).
文摘Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
基金funded by the National Science Foundation of China,Nos.51674121 and 61702184the Returned Overseas Scholar Funding of Hebei Province,No.C2015005014the Hebei Key Laboratory of Science and Application,and Tangshan Innovation Team Project,No.18130209B.
文摘Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of identifying puncture points,a point-cloud search arithmetic method for modified adaptive weighted particle swarm optimization is proposed and used for optimal external axis extraction.According to the characteristics of the multitube drainage tube and the clinical needs of puncture for intracranial hematoma removal,the proposed algorithm can provide an optimal route for a drainage tube for the hematoma,the precise position of the puncture point,and preoperative planning information,which have considerable instructional significance for clinicians.
基金supported in part by the National Natural Science Foundation of China under Grant 61902311in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)under Grant JP18K18044.
文摘With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in outdoor hazy environments are prone to color distortion and low contrast;thus,the desired visual effect cannot be achieved and the difficulty of target detection is increased.Artificial intelligence(AI)solutions provide great help for dehazy images,which can automatically identify patterns or monitor the environment.Therefore,we propose a 3D reconstruction method of dehazed images for smart cities based on deep learning.First,we propose a fine transmission image deep convolutional regression network(FT-DCRN)dehazing algorithm that uses fine transmission image and atmospheric light value to compute dehazed image.The DCRN is used to obtain the coarse transmission image,which can not only expand the receptive field of the network but also retain the features to maintain the nonlinearity of the overall network.The fine transmission image is obtained by refining the coarse transmission image using a guided filter.The atmospheric light value is estimated according to the position and brightness of the pixels in the original hazy image.Second,we use the dehazed images generated by the FT-DCRN dehazing algorithm for 3D reconstruction.An advanced relaxed iterative fine matching based on the structure from motion(ARI-SFM)algorithm is proposed.The ARISFM algorithm,which obtains the fine matching corner pairs and reduces the number of iterations,establishes an accurate one-to-one matching corner relationship.The experimental results show that our FT-DCRN dehazing algorithm improves the accuracy compared to other representative algorithms.In addition,the ARI-SFM algorithm guarantees the precision and improves the efficiency.
基金National Natural Science Foundation of China(Nos.61162016,61562057)Natural Science Foundation of Gansu Province(No.18JR3RA124)+1 种基金Science and Technology Program Project of Gansu Province(Nos.18JR3RA104,1504FKCA038)Science and Technology Project of Gansu Education Department(No.2017D-08)
文摘As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete algorithm with the scanning line compensation algorithm,a mathematical model is built.According to the topological relations between several control points on the model surface,the surface of the model is discretized,and a planar triangle sequence is used to describe 3D objects.Finally,the bitmap is enlarged by combining the borrowing compensation based on 3D modeling principle of discrete algorithm with the scanning line compensation algorithm of binary lattice image,thus getting a relatively clear enlarged BMP image.
文摘In recent years,the three dimensional reconstruction of vascular structures in the field of medical research has been extensively developed.Several studies describe the various numerical methods to numerical modeling of vascular structures in near-reality.However,the current approaches remain too expensive in terms of storage capacity.Therefore,it is necessary to find the right balance between the relevance of information and storage space.This article adopts two sets of human retinal blood vessel data in 3D to proceed with data reduction in the first part and then via 3D fractal reconstruction,recreate them in a second part.The results show that the reduction rate obtained is between 66%and 95%as a function of the tolerance rate.Depending on the number of iterations used,the 3D blood vessel model is successful at reconstruction with an average error of 0.19 to 5.73 percent between the original picture and the reconstructed image.
文摘3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model. In this paper, a new algorithm for realistic-looking face reconstruction is presented based on stereo vision. Firstly, a pattern is printed and attached to a planar surface for camera calibration, and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade (PLK) algorithm and local adjustment algorithm, and then 3D coordinates of corners are obtained by 3D reconstruction. Individual face model is generated by the deformation of general 3D model and interpolation of the features. Finally, realistic-looking human face model is obtained after texture mapping and eyes modeling. In addition, some application examples in the field of VR are given. Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.