期刊文献+
共找到7,808篇文章
< 1 2 250 >
每页显示 20 50 100
Intravascular photoacoustic and optical coherence tomography imaging dual-mode system for detecting spontaneous coronary artery dissection: A feasibility study 被引量:1
1
作者 Yongwei Wang Yuyang Wan Zhongjiang Chen 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期77-86,共10页
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ... In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications. 展开更多
关键词 Spontaneous coronary artery dissection(SCAD) intravascular optical coherence tomography(IVOCT) intravascular photoacoustic imaging(IVPAI)
下载PDF
MACS-W:A modified optical clearing agent for imaging 3D cell cultures
2
作者 Xiang Zhong Chao Gao +6 位作者 Hui Li Yuening He Peng Fei Zaozao Chen Zhongze Gu Dan Zhu Tingting Yu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期24-34,共11页
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible... Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures. 展开更多
关键词 Tissue optical clearing 3D cell cultures imaging
下载PDF
Deep learning-based inpainting of saturation artifacts in optical coherence tomography images
3
作者 Muyun Hu Zhuoqun Yuan +2 位作者 Di Yang Jingzhu Zhao Yanmei Liang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期1-10,共10页
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ... Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness. 展开更多
关键词 optical coherence tomography saturation artifacts deep learning image inpainting.
下载PDF
Optical encryption scheme based on spread spectrum ghost imaging
4
作者 刘进芬 董玥 +1 位作者 王乐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期375-381,共7页
An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadam... An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadamard matrix of order N is used as the secure key, and shared with the authorized user, Bob, through a private channel. Each corresponding row vector of the order-N Hadamard matrix is then used as the direct sequence code to modulate a speckle pattern for the ghost imaging system, and an image is encrypted with the help of the SSGI. The measurement results from the bucket detector, named as ciphertext, are then transmitted to Bob through a public channel. The illuminating speckle patterns are also shared with Bob by the public channel. With the correct secure key, Bob could reconstruct the image with the aid of the SSGI system, whereas the unauthorized user, Eve, could not obtain any useful information of the encrypted image. The numerical simulations and experimental results show that the proposed scheme is feasible with a higher security and a smaller key. For the 32 × 32 pixels image, the number of bits sent from Alice to Bob by using SSGIOE(M = 1024, N = 2048) scheme is only 0.0107 times over a computational ghost imaging optical encryption scheme.When the eavesdropping ratio(ER) is less than 40%, the eavesdropper cannot acquire any information of the encrypted image. The extreme circumstance for the proposed SSGI-OE scheme is also discussed, where the eavesdropper begins to extract the information when ER is up to 15%. 展开更多
关键词 optical encryption ghost imaging spread spectrum correlated imaging
下载PDF
Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array
5
作者 马丽凤 杜杉 +6 位作者 常军 陈蔚霖 武楚晗 石鑫鑫 黄翼 钟乐 穆全全 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期304-309,共6页
Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following pro... Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands. 展开更多
关键词 REAL-TIME middle infrared optical imaging system metasurface polarization array
下载PDF
An optical tweezer-based microdroplet imaging technology
6
作者 Cong Zhai Yujian Hong +4 位作者 Zuzeng Lin Yulu Chen Han Wang Tong Guo Chunguang Hu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期27-33,共7页
Microspheres can break the diffraction limit and magnify nano-structure imaging,and with its advantages of low cost and label-free operation,microsphere-assisted imaging has become an irreplaceable tool in the life sc... Microspheres can break the diffraction limit and magnify nano-structure imaging,and with its advantages of low cost and label-free operation,microsphere-assisted imaging has become an irreplaceable tool in the life sciences and for precision measurements.However,the tiny size and limited imaging field of traditional solid microspheres cause difficulties when imaging large sample areas.Alternatively,droplets have similar properties to those of microspheres,with large surface curvature and refractive-index difference from the surrounding environment,and they can also serve as lenses to focus light for observation and imaging.Previous work has shown that droplets with controllable size can be generated using an optical tweezer system and can be driven by optical traps to move precisely like solid microspheres.Here,a novel microdroplet-assisted imaging technology based on optical tweezers is proposed that better integrates the generation,manipulation,and utilization of droplets. 展开更多
关键词 optical tweezers Photogenerated droplets Assisted imaging Controllable generation
下载PDF
Research on the model of high robustness computational optical imaging system
7
作者 苏云 席特立 邵晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期264-272,共9页
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com... Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging. 展开更多
关键词 computational optical imaging high robustness sensitivity
下载PDF
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
8
作者 Chunyan Chu Zhentao Liu +4 位作者 Mingliang Chen Xuehui Shao Guohai Situ Yuejin Zhao Shensheng Han 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第12期27-35,共9页
High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional... High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths. 展开更多
关键词 optical synthetic aperture imaging ghost imaging intensity interferometry
下载PDF
Observing single cells in whole organs with optical imaging
9
作者 Xiaoquan Yang Tao Jiang +5 位作者 Lirui Liu Xiaojun Zhao Ximiao Yu Minjun Yang Guangcai Liu Qingming Luo 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS CSCD 2023年第1期115-140,共26页
Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells... Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information. 展开更多
关键词 Single cell observation whole organ optical imaging
下载PDF
Optical coherence tomography enhanced depth imaging of chorioretinal folds in patients with orbital tumors
10
作者 Zhi-Yu Peng Lu Gan +4 位作者 Kang Xue Akrit Sodhi Xiao-Feng Ye Hui Ren Jiang Qian 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第2期233-237,共5页
AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was... AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was conducted in 20 eyes of 20 patients,the uninvolved eye served as a control.All the patients underwent clinical fundus photography,computed tomography,EDI SDOCT imaging before and after surgery.Two patients with cavernous hemangiomas underwent intratumoral injection of bleomycin A5;the remaining patients underwent tumor excision.Patients were followed 1 to 14mo following surgery(average follow up,5.8mo).RESULTS:Visual acuity prior to surgery ranged from 20/20 to 20/200.Following surgery,5 patients’visual acuity remained unchanged while the remaining 15 patients had a mean letter improvement of 10(range 4 to 26 letters).Photoreceptor inner/outer segment defects were found in 10 of 15 patients prior to surgery.Following surgical excision,photoreceptor inner/outer segment defects fully resolved in 8 of these 10 patients.CONCLUSION:Persistence of photoreceptor inner/outer segment defects caused by compression of the globe by an orbital mass can be associated with reduced visual prognosis.Our findings suggest that photoreceptor inner/outer segment defects on EDI SD-OCT could be an indicator for immediate surgical excision of an orbital mass causing choroidal compression. 展开更多
关键词 chorioretinal folds orbital mass enhanced depth imaging optical coherence tomography choroidal thickness inner/outer segment defects
下载PDF
Imaging assessment of photosensitizer emission induced by radionuclide-derived Cherenkov radiation using charge-coupled device optical imaging and long-pass filters
11
作者 Winn Aung Atsushi B Tsuji +3 位作者 Kazuaki Rikiyama Fumihiko Nishikido Satoshi Obara Tatsuya Higashi 《World Journal of Radiology》 2023年第11期315-323,共9页
BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,c... BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,cost-effectively identifying whether PSs are excited by radionuclide-derived CR and detecting fluorescence emission from excited PSs remain a challenge.Many laboratories face the need for expensive dedicated equipment.AIM To cost-effectively confirm whether PSs are excited by radionuclide-derived CR and distinguish fluorescence emission from excited PSs.METHODS The absorbance and fluorescence spectra of PSs were measured using a microplate reader and fluorescence spectrometer to examine the photo-physical properties of PSs.To mitigate the need for expensive dedicated equipment and achieve the aim of the study,we developed a method that utilizes a chargecoupled device optical imaging system and appropriate long-pass filters of different wavelengths(manual sequential application of long-pass filters of 515,580,645,700,750,and 800 nm).Tetrakis(4-carboxyphenyl)porphyrin(TCPP)was utilized as a model PS.Different doses of copper-64(^(64)CuCl_(2))(4,2,and 1 mCi)were used as CR-producing radionuclides.Imaging and data acquisition were performed 0.5 h after sample preparation.Differential image analysis was conducted by using ImageJ software(National Institutes of Health)to visually evaluate TCPP fluorescence.RESULTS The maximum absorbance of TCPP was at 390-430 nm,and the emission peak was at 670 nm.The CR and CRinduced TCPP emissions were observed using the optical imaging system and the high-transmittance long-pass filters described above.The emission spectra of TCPP with a peak in the 645-700 nm window were obtained by calculation and subtraction based on the serial signal intensity(total flux)difference between^(64)CuCl_(2)+TCPP and^(64)CuCl_(2).Moreover,the differential fluorescence images of TCPP were obtained by subtracting the^(64)CuCl_(2)image from the^(64)CuCl_(2)+TCPP image.The experimental results considering different^(64)CuCl_(2)doses showed a dosedependent trend.These results demonstrate that a bioluminescence imaging device coupled with different longpass filters and subtraction image processing can confirm the emission spectra and differential fluorescence images of CR-induced TCPP.CONCLUSION This simple method identifies the PS fluorescence emission generated by radionuclide-derived CR and can contribute to accelerating the development of Cherenkov energy transfer imaging and the discovery of new PSs. 展开更多
关键词 Tetrakis(4-carboxyphenyl)porphyrin Photosensitizer emission RADIONUCLIDE Cherenkov radiation optical imaging Long-pass filters
下载PDF
基于改进CGAN的海冰SAR-to-Optical影像转换
12
作者 刘翔 王瑞富 +1 位作者 孙光 李媛 《海洋通报》 CAS CSCD 北大核心 2024年第4期452-462,共11页
遥感海冰监测是当前研究热点,通过条件生成对抗网络(CGAN)将海冰SAR影像转换成光学影像,可获得全天时全天候且形象直观的监测数据,但该方法得到的转换结果存在影像模糊、纹理弱化和颜色失真等问题。本文针对以上问题设计了改进的CGAN网... 遥感海冰监测是当前研究热点,通过条件生成对抗网络(CGAN)将海冰SAR影像转换成光学影像,可获得全天时全天候且形象直观的监测数据,但该方法得到的转换结果存在影像模糊、纹理弱化和颜色失真等问题。本文针对以上问题设计了改进的CGAN网络,综合当前的改进方式,新模型在网络结构上加入了空洞空间金字塔模块并设计了加入交叉特征融合模块的跳跃连接,使用结构相似性和L1范数联合损失函数。本文选取东波弗特海地区5景Sentinel-1影像和7景Sentinel-2影像开展实验,实验结果表明,改进CGAN转换的影像具有更好的视觉效果,峰值信噪比(PSNR)提高了3.4 dB,结构相似性(SSIM)提高了0.11,均方根误差(RMSE)降低了13%,并且经过转换后的影像比SAR影像海冰分类结果准确度提高了7.33%。 展开更多
关键词 海冰监测 条件生成对抗网络 SAR 光学影像 影像转换
下载PDF
A historical overview of nano-optics:From near-field optics to plasmonics
13
作者 邓妙怡 朱星 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期134-145,共12页
Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to o... Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to obtain higher optical resolution over the diffraction limit.The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy(SNOM)are developed.The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons.In the sense of resolution and wider application,there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development.Nowadays,studies of nano-optics prefer the investigation of plasmonics in different material systems.In this article,the history of the development of near-field optics is briefly reviewed.The difficulties of conventional SNOM to achieve higher resolution are discussed.As an alternative solution,surface plasmons have shown the advantages of higher resolution,wider application,and flexible nano-optical modulation for new devices.The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed.In this way,the evolution progress from near-field optics to plasmonics of nano-optics research is presented.The future development of nano-optics is discussed then. 展开更多
关键词 NANO-opticS near-field optics surface plasmon plasmonic modulation
下载PDF
NIR-II fluorescence imaging in liver tumor surgery: A narrative review
14
作者 Zihao Liu Lifeng Yan +1 位作者 Qingsong Hu Dalong Yin 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期29-44,共16页
In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpat... In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction. 展开更多
关键词 Fluorescence guided-surgery liver cancer near infrared-II optical imaging
下载PDF
Automatic diagnosis of diabetic retinopathy using vision transformer based on wide-field optical coherence tomography angiography
15
作者 Zenan Zhou Huanhuan Yu +3 位作者 Jiaqing Zhao Xiangning Wang Qiang Wu Cuixia Dai 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期35-44,共10页
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,... Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR. 展开更多
关键词 Wide field optical coherence tomography angiography diabetic retinopathy vision transformer image classification
下载PDF
The Application Progress of Skin Imaging Technology in Psoriasis
16
作者 Qinyi Wang Jin Gong 《Advances in Bioscience and Biotechnology》 CAS 2024年第7期397-405,共9页
Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can impr... Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can improve clinical diagnosis rate, and its non-invasiveness and repeatability make it occupy an irreplaceable position in clinical diagnosis. With the “booming development” of medical technology, skin imaging technology can improve clinical diagnosis rate. Researchers have made significant advances in assisting clinical diagnosis, prediction, and treatment of disease. This article reviews the application and progress of skin imaging in the diagnosis of psoriasis. 展开更多
关键词 PSORIASIS Skin imaging Technology High Frequency Ultrasound optical Coherence Tomography
下载PDF
Detecting early changes in choroidal vascularity and thickness using optical coherence tomography in patients with corneal crosslinking for keratoconus
17
作者 Selim Doganay Mehmet Omer Kiristioglu +1 位作者 Derya Doganay Elif Kacmaz 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1267-1272,共6页
AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal cr... AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal crosslinking.The choroidal thicknesses were evaluated on enhanced depth imaging optical coherence tomography at the preoperative and postoperative 3d,1,and 3mo.Choroidal thickness in the four cardinal quadrants and the fovea were evaluated.The choroidal vascularity index was also calculated.RESULTS:There was no significant difference in central choroidal thickness between the preoperative and postoperative 3d,1mo(P>0.05).There was a significant increase in the 3mo(P=0.034)and a significant decrease in the horizontal choroidal vascularity index on the postoperative 3d(P=0.014),there was no statistically significant change in vertical axes and other visits in horizontal sections(P>0.05).CONCLUSION:This study sheds light on choroidal changes in postoperative corneal crosslinking for keratoconus.While it suggests the procedure’s relative safety for submacular choroid,more extensive research is necessary to confirm these findings and their clinical significance. 展开更多
关键词 KERATOCONUS corneal crosslinking choroidal vascularity index enhanced depth imaging optical coherence tomography
下载PDF
About Some Aspects of Use of Optical Sensors for Monitoring the Aquatic Environment
18
作者 Ferdenant Mkrtchyan Vladimiir Soldatov Maxim Mkrtchyan 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期1-10,共10页
Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aqu... Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements. 展开更多
关键词 MONITORING Aquatic environment Polarization optics Water object POLLUTANTS Spectral images Classification Identification
下载PDF
Optical scanning endoscope via a single multimode optical fiber
19
作者 Guangxing Wu Runze Zhu +2 位作者 Yanqing Lu Minghui Hong Fei Xu 《Opto-Electronic Science》 2024年第3期1-32,共32页
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm... Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed. 展开更多
关键词 multimode optical fiber ENDOSCOPE scanning imaging FOCUSING wavefront shaping
下载PDF
Recent advances in optical techniques for dynamically probing cellular mechanobiology
20
作者 Fengqi Wang Qin Zhang +2 位作者 Mo Yang Bohan Yin Siu Hong Dexter Wong 《Biomedical Engineering Communications》 2024年第3期3-11,共9页
Cellular mechanotransduction characterized by the transformation of mechanical stimuli into biochemical signals,represents a pivotal and complex process underpinning a multitude of cellular functionalities.This proces... Cellular mechanotransduction characterized by the transformation of mechanical stimuli into biochemical signals,represents a pivotal and complex process underpinning a multitude of cellular functionalities.This process is integral to diverse biological phenomena,including embryonic development,cell migration,tissue regeneration,and disease pathology,particularly in the context of cancer metastasis and cardiovascular diseases.Despite the profound biological and clinical significance of mechanotransduction,our understanding of this complex process remains incomplete.The recent development of advanced optical techniques enables in-situ force measurement and subcellular manipulation from the outer cell membrane to the organelles inside a cell.In this review,we delved into the current state-of-the-art techniques utilized to probe cellular mechanobiology,their principles,applications,and limitations.We mainly examined optical methodologies to quantitatively measure the mechanical properties of cells during intracellular transport,cell adhesion,and migration.We provided an introductory overview of various conventional and optical-based techniques for probing cellular mechanics.These techniques have provided into the dynamics of mechanobiology,their potential to unravel mechanistic intricacies and implications for therapeutic intervention. 展开更多
关键词 MECHANOBIOLOGY cell adhesion optical techniques live cell imaging cell fates
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部