Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration...Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.展开更多
The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem ...The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used...In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.展开更多
Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic ...Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic Aperture Radar) is documented in some recent papers[3] to [6]. Applications have been attempted also to SAR (Synthetic Aperture Radar)[7][8]. In these fields the benefit ofspectral estimation reveals in a resolution beyond the Rayleigh limits set by compressed pulse andsynthetic aperture lengths. Furthermore very low sidelobes of point scatterer response are obtained.In this paper superresolution has been applied both to simulated stepped-frequency ISAR dataand to real ERS-1 SAR data; the achieved results are encouraging and suggest a more extensivepractical application of the technique. The paper is organized in two parts. In the first we have applied the autoregressive (AR) and the minimum variance (MV)-Capon methods to improve therange resolution of simulated ISAR data. In the second part we have conceived an upgraded versionof spectral analysis (SPECAN) processing to obtain a SAR image of better quality. The method hasbeen tested on recorded live data of ERS-1 mission.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor...As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.展开更多
Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficien...Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of t...A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).展开更多
This paper presents the system design and experimental results of a 35GHz coherent LFM-CW radar for use in near range two-dimensional imaging. Special techniques, including FM sweep linearization, range-segment proces...This paper presents the system design and experimental results of a 35GHz coherent LFM-CW radar for use in near range two-dimensional imaging. Special techniques, including FM sweep linearization, range-segment processing, system background voltage suppression and dynamic range compression are also presented.展开更多
Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.I...Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.展开更多
Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to ...Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.展开更多
Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing...Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can ...A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can hardly be seen in the results obtained by traditional imaging algorithm.To solve this problem,we propose a millimeter-wave LFMCW radar imaging algorithm for water surface texture.Different from the traditional imaging algorithm,the proposed imaging algorithm includes two improvements as follows:Firstly,the interference from static targets is removed through a frequency domainfilter;Secondly,the multiplicative noises are reduced by the maximum likelihood estimation method,which is used to estimatethe azimuth spectrum parameters to calculate the energy of water surface echo.Final results show that the proposed algorithmcan obtain water surface texture,which means that the proposed algorithm is superior to the traditional imaging algorithm.展开更多
A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the p...A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital rec...With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.展开更多
A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing pr...A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.展开更多
基金supported by the Opening Foundation of the Agile and Intelligence Computing Key Laboratory of Sichuan Province under Grant No.H23004the Chengdu Municipal Science and Technology Bureau Technological Innovation R&D Project(Key Project)under Grant No.2024-YF08-00106-GX.
文摘Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.
基金The Natural Science Foundation of Jiangsu Province(NoBK2008429)Open Research Foundation of State Key Laboratory ofMillimeter Waves of Southeast University(NoK200903)+1 种基金China Postdoctoral Science Foundation(No20080431126)Jiangsu Province Postdoctoral Science Foundation(No2007337)
文摘The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
文摘In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.
文摘Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic Aperture Radar) is documented in some recent papers[3] to [6]. Applications have been attempted also to SAR (Synthetic Aperture Radar)[7][8]. In these fields the benefit ofspectral estimation reveals in a resolution beyond the Rayleigh limits set by compressed pulse andsynthetic aperture lengths. Furthermore very low sidelobes of point scatterer response are obtained.In this paper superresolution has been applied both to simulated stepped-frequency ISAR dataand to real ERS-1 SAR data; the achieved results are encouraging and suggest a more extensivepractical application of the technique. The paper is organized in two parts. In the first we have applied the autoregressive (AR) and the minimum variance (MV)-Capon methods to improve therange resolution of simulated ISAR data. In the second part we have conceived an upgraded versionof spectral analysis (SPECAN) processing to obtain a SAR image of better quality. The method hasbeen tested on recorded live data of ERS-1 mission.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
基金supported by the Fundamental Research Funds for the Central Universities(DL13BB21)the Natural Science Foundation of Heilongjiang Province(C2015054)+1 种基金Heilongjiang Province Technology Foundation for Selected Osverseas ChineseNatural Science Foundation of Heilongjiang Province(F2015036)
文摘As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.
基金supported by the China National Funds for Distinguished Young Scientists(61025006)
文摘Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金supported by the National Natural Science Foundation of China(61771369 61775219+5 种基金 61640422)the Fundamental Research Funds for the Central Universities(JB180310)the Equipment Research Program of the Chinese Academy of Sciences(YJKYYQ20180039)the Shaanxi Provincial Key R&D Program(2018SF-409 2018ZDXM-SF-027)the Natural Science Basic Research Plan
文摘A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).
文摘This paper presents the system design and experimental results of a 35GHz coherent LFM-CW radar for use in near range two-dimensional imaging. Special techniques, including FM sweep linearization, range-segment processing, system background voltage suppression and dynamic range compression are also presented.
基金supported by the National Natural Science Foundation of China(61871146).
文摘Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.
文摘Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.
基金Projects(61171133,61271442)supported by the National Natural Science Foundation of ChinaProject(61025006)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(B110404)supported by the Innovation Program for Excellent Postgraduates of National University of Defense Technology,China
文摘Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
文摘A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can hardly be seen in the results obtained by traditional imaging algorithm.To solve this problem,we propose a millimeter-wave LFMCW radar imaging algorithm for water surface texture.Different from the traditional imaging algorithm,the proposed imaging algorithm includes two improvements as follows:Firstly,the interference from static targets is removed through a frequency domainfilter;Secondly,the multiplicative noises are reduced by the maximum likelihood estimation method,which is used to estimatethe azimuth spectrum parameters to calculate the energy of water surface echo.Final results show that the proposed algorithmcan obtain water surface texture,which means that the proposed algorithm is superior to the traditional imaging algorithm.
文摘A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
文摘With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.
基金Supported by the National Naturral Science Foundation of China(61301191)
文摘A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.