On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a sla...On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.展开更多
After validated by the in-situ observation, the slab model is used to study the wind-generated near-inertial energy flux(NIEF) in the South China Sea(SCS) based on satellite-observed wind data, and its dependence on c...After validated by the in-situ observation, the slab model is used to study the wind-generated near-inertial energy flux(NIEF) in the South China Sea(SCS) based on satellite-observed wind data, and its dependence on calculation methods and threshold criteria of the mixed layer depth(MLD) is investigated. Results illustrate that the total amount of NIEF in the SCS could be doubled if different threshold criteria of MLD are adopted. The NIEF calculated by the iteration and spectral solutions can lead to a discrepancy of 2.5 GW(1 GW=1×109 W). Results also indicate that the NIEF exhibits spatial and temporal variations, which are significant in the boreal autumn,and in the southern part of the SCS. Typhoons are an important generator of NIEF in the SCS, which could account for approximately 30% of the annual mean NIEF. In addition, deepening of the MLD due to strong winds could lead to a decrease of NIEF by approximately by 10%. We re-estimate the annual mean NIEF in the SCS,which is(10±4) GW and much larger than those reported in previous studies.展开更多
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an...Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.展开更多
The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engin...The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engines for the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines (a drinking bird, a low temperature Stirling engine), resulting in thermoelectric energy generation different from conventional heat engines. The mechanism of thermoelectric energy conversion can be categorized as the axial flux generator (AFG) and the radial flux generator (RFG). The axial flux generator is helpful for low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators, such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines, and the device contributes to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.展开更多
正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8...正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.展开更多
Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seaso...Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.展开更多
Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using obse...Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using observations from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) in July, 2008. The calorimetric method, which involves soil heat flux measurement with an HFP01SC self-calibrating heat flux plate buried at a depth of 5 cm and heat storage in the soil between the plate and the surface, is here called the ITHP approach. The results show good linear relationships between the soil heat fluxes measured with the HFP01SC heat flux plate and those calculated with the HA technique and the TDEC method, respectively, at a depth of 5 cm. The soil heat fluxes calculated with the latter two methods well follow the phase measured with the HFP01SC heat flux plate. The magnitudes of the soil heat flux calculated with the HA technique and the TDEC method are close to each other, and they are about 2 percent and 6 percent larger than the measured soil heat flux, respectively, which mainly occur during the nighttime. Moreover, the ground heat fluxes calculated with the TDEC method and the HA technique are highly correlated with each other (R2= 0.97), and their difference is only about 1 percent. The TDEC-calculated ground heat flux also has a good linear relationship with the ITttP-calculated ground heat flux (R2 = 0.99), but their difference is larger (about 9 percent). Furthermore, compared to the HFP01SC direct measurements at a depth of 5 cm, the ground heat flux calculated with the HA technique, the TDEC method, and the ITHP approach can improve the surface energy budget closure by about 6 percent, 7 percent, and 6 percent at SACOL site, respectively. Therefore, the contribution of ground heat flux to the surface energy budget is very important for the semi-arid grassland over the Loess Plateau in China. Using turbulent heat fluxes with common corrections, soil heat storage between the surface and the heat flux plate can improve the surface energy budget closure by about 6 to 7 percent, resulting in a closure of 82 to 83 percent at the SACOL site.展开更多
Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measuremen...Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert.展开更多
The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from Apri...The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from April 2012 to April 2013. The results indicate that the Iongwave and shortwave radiative fluxes exhibited large fluctuations and seasonal dynamics. The total radiative energy loss by Iongwave and shortwave radiation was greater on the megadune than from other underlying surfaces. The radiation partitioning was different in different seasons. The land-atmosphere interaction was primarily represented by the sensible heat flux. The average sensi- ble heat flux (40.1 W/m2) was much larger than the average latent heat flux (14.5 W/m2). Soil heat flux played an important role in the energy balance. The mean actual evaporation was 0.41 mm/d, and the cumulative actual evaporation was approximately 150 mm/a. The water vapor would transport downwardly and appear as dew con- densation water. The amount of precipitation determined the actual evaporation. The actual evaporation was sup- posed to be equal to the precipitation on the megadune and the precipitation was difficult to recharge the ground- water. Our study can provide a foundation for further research on land-atmosphere interactions in this area.展开更多
The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the...The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.展开更多
Near-inertial oscillation is an important physical process transferring surface wind energy into deep ocean.We investigated the near-inertial kinetic energy(NIKE)variability using acoustic Doppler current profiler mea...Near-inertial oscillation is an important physical process transferring surface wind energy into deep ocean.We investigated the near-inertial kinetic energy(NIKE)variability using acoustic Doppler current profiler measurements from a mooring array deployed in the tropical western Pacific Ocean along 130°E at 8.5°N,11°N,12.6°N,15°N,and 17.5°N from September 2015 to January 2018.Spatial features,decay timescales,and significant seasonal variability of the observed NIKE were described.At the mooring sites of 17.5°N,15°N,and 12.6°N,the NIKE peaks occurred in boreal autumn and the NIKE troughs were observed in boreal spring.By contrast,the NIKE at 11°N and 8.5°N showed peaks in winter and troughs in summer.Tropical cyclones and strong wind events played an important role in the emergence of high-NIKE events and explained the seasonality and latitudinal characteristics of the observed NIKE.展开更多
Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-S...Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-Southern Oscillation (ENSO).As one of the major terrestrial energy sources,the effect of solar wind energy flux in Earth's magnetosphere (Ein) on the climate has not drawn much attention,due to the big challenge associated with its quantitative estimation.Based on a new Ein index estimated by three-dimensional magnetohydrodynamic simulations from a previous study,this study reveals that Ein exhibits both quasi-decadal variability (periodic 11-year) and interannual (2-4 years) variability,which has rarely before been detected by SSN and F10.7.A significant interannual relationship between the annual mean Ein and subsequent early-winter ENSO is further revealed.Following high Ein,the sea level pressure in the subsequent early winter shows significant positive anomalies from Asia southward to the Maritime Continent,and significant negative anomalies over the Southeast and Northeast Pacific,resembling the Southern Oscillation.Meanwhile,significant upper-level anomalous convergence and divergence winds appear over the western and eastern Pacific,which is configured with significant lower-level anomalous divergence and convergence,indicating a weakening of the Walker circulation.Consequently,notable surface easterly wind anomalies prevail over the eastern tropical Pacific,leading to El Ni(n展开更多
This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phas...This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phase and active transformations, the three-phase model is transformed to two-phase equations by making both the stator and rotor as reference frames, finally converting to arbitrary reference frame, which is useful for the modelling of the axial flux machine. The torque, current, and voltage equations are expressed to improve the simulation reliability. Based on the developed equations, the mathematical model for the axial flux machine is developed using the MATLAB/Simulink. Starting with the axial flux motor model, when the load on the motor increases, how the parameters like torque, current, and speed of the motor vary are explored in this paper. Then for the axial flux generator model, when the wind speed exceeds the rated speed how the torque, line voltages, currents, power and speed of the generator behave are investigated and presented in this paper. The developed model in this paper could be extended to a twin-rotor axial flux synchronous machine, which will lead to the development of more efficient WECS.展开更多
The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two lan...The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.展开更多
High-energy electron precipitation in the high latitude regions enhances the ionization of the atmosphere,and subsequently increases the atmospheric conductivities and the vertical electric field of the atmosphere nea...High-energy electron precipitation in the high latitude regions enhances the ionization of the atmosphere,and subsequently increases the atmospheric conductivities and the vertical electric field of the atmosphere near the ground as well.The High-Energy Electron Flux(HEEF) data measured by the Fengyun-3 meteorological satellite are analyzed together with the data of nearsurface atmospheric vertical electric field measured at the Russian Vostok Station.Three HEEF enhancements are identified and it is shown that when the HEEF increases to a certain level,the local atmospheric vertical electric field near the ground can increase substantially than usual.The response time of the electric field to HEEF enhancement is about 3.7 to 4 days.展开更多
Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantita...Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.展开更多
La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 ye...La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.展开更多
Internal waves play a crucial role in ocean mixing, and density perturbation and energy flux are essential quantities to investigate the generation and propagation of internal waves. This paper presents a methodology ...Internal waves play a crucial role in ocean mixing, and density perturbation and energy flux are essential quantities to investigate the generation and propagation of internal waves. This paper presents a methodology for calculating density perturbation and energy flux of internal waves only using a velocity field that is based on linearized equations for internal waves. The method was tested by numerical simulations of internal waves generated by tidal flowing over a Gaussian topography in a stratified fluid. The density perturbations and energy fluxes determined using our method that only used velocity data agreed with density perturbations and energy fluxes determined by the equation of state based on temperature data. The mean relative error(MRE) and root mean square error(RMSE) between the two methods were lower than 5% and 10% respectively. In addition, an experiment was performed to exam our method using the velocity field measured by Particle Image Velocimetry(PIV), and the setup of the experiment is consistent with the numerical model. The results of the experiments calculated by the methods using PIV data were also generally equal to those of the numerical model.展开更多
Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Communit...Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Community Land Model version 3.5 (CLM3.5), driven by the latest updated hybrid reanalysis-observational surface climate data from Princeton University, is used to obtain global distributions of surface energy fluxes during 1948 to 2000. Based on the climate data and simulation results, long-term trends and interannual variability (IAV) of both climatic variables and surface energy fluxes for this span of 50+ years are derived and analyzed. Regions with strong long-term trends and large IAV for both climatic variables and surface energy fluxes are identified. These analyses reveal seasonal variations in the spatial patterns of climate and surface fluxes; however, spatial patterns in trends and IAV for surface energy fluxes over the past ~50 years do not fully correspond to those for climatic variables, indicating complex responses of land surfaces to changes in the climatic forcings.展开更多
High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was...High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was observed in the time resolved turbulent fluxes with positive skewness and large kurtosis. The contribution of the large sporadic bursts to the transport losses were estimated. The analysis shows that the turbulent fluxes have different behaviour in different frequency domains and the probability distribution functions (PDFs) of the particle and energy fluxes present two distinct scaling ranges. All these are essentially consistent with the predictions of the self-organized criticality (SOC) model, though further studies are needed.展开更多
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020201the National Basic Research Program of China under contract No.2013CB956101+2 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under con-tract No.SQ201302the National Science Foundation Council Grant of China under contract Nos 41430964,41406023 and 41025019the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams and General Research Fund of Hong Kong Research Grants Council under contract No.CUHK402912
文摘On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.
基金The National Natural Science Foundation of China under contract No.40976016the Basic Scientific Fund for the National Public Research Institutes of China under contract No.GY0217Q06+1 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No.2018YFF01014100the Natural Science Foundation of Shandong Province,China under contract No.ZR2015PD009
文摘After validated by the in-situ observation, the slab model is used to study the wind-generated near-inertial energy flux(NIEF) in the South China Sea(SCS) based on satellite-observed wind data, and its dependence on calculation methods and threshold criteria of the mixed layer depth(MLD) is investigated. Results illustrate that the total amount of NIEF in the SCS could be doubled if different threshold criteria of MLD are adopted. The NIEF calculated by the iteration and spectral solutions can lead to a discrepancy of 2.5 GW(1 GW=1×109 W). Results also indicate that the NIEF exhibits spatial and temporal variations, which are significant in the boreal autumn,and in the southern part of the SCS. Typhoons are an important generator of NIEF in the SCS, which could account for approximately 30% of the annual mean NIEF. In addition, deepening of the MLD due to strong winds could lead to a decrease of NIEF by approximately by 10%. We re-estimate the annual mean NIEF in the SCS,which is(10±4) GW and much larger than those reported in previous studies.
基金the National Natural Science Foundation of China(Grant No.U20A2081)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202102)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Project(Grant No.2019QZKK0105).
文摘Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.
文摘The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engines for the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines (a drinking bird, a low temperature Stirling engine), resulting in thermoelectric energy generation different from conventional heat engines. The mechanism of thermoelectric energy conversion can be categorized as the axial flux generator (AFG) and the radial flux generator (RFG). The axial flux generator is helpful for low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators, such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines, and the device contributes to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.
基金supported by the National Natural Science Foundation of China,under the project entitled“The study of land-atmosphere water and heat flux interaction over the complex terrain of the north and south slopes of the Qomolangma region"[grant number 42230610]a Ministry of Science and Technology of China project called“Landatmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program"[grant number 2019QzKK0103]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[2022069].
文摘正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.
基金the National Basic Research Program of China (973 Program, 2006CB500401)
文摘Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.
基金supported by the National Natural Science Foundation of China (GrantNo. 40725015)
文摘Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using observations from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) in July, 2008. The calorimetric method, which involves soil heat flux measurement with an HFP01SC self-calibrating heat flux plate buried at a depth of 5 cm and heat storage in the soil between the plate and the surface, is here called the ITHP approach. The results show good linear relationships between the soil heat fluxes measured with the HFP01SC heat flux plate and those calculated with the HA technique and the TDEC method, respectively, at a depth of 5 cm. The soil heat fluxes calculated with the latter two methods well follow the phase measured with the HFP01SC heat flux plate. The magnitudes of the soil heat flux calculated with the HA technique and the TDEC method are close to each other, and they are about 2 percent and 6 percent larger than the measured soil heat flux, respectively, which mainly occur during the nighttime. Moreover, the ground heat fluxes calculated with the TDEC method and the HA technique are highly correlated with each other (R2= 0.97), and their difference is only about 1 percent. The TDEC-calculated ground heat flux also has a good linear relationship with the ITttP-calculated ground heat flux (R2 = 0.99), but their difference is larger (about 9 percent). Furthermore, compared to the HFP01SC direct measurements at a depth of 5 cm, the ground heat flux calculated with the HA technique, the TDEC method, and the ITHP approach can improve the surface energy budget closure by about 6 percent, 7 percent, and 6 percent at SACOL site, respectively. Therefore, the contribution of ground heat flux to the surface energy budget is very important for the semi-arid grassland over the Loess Plateau in China. Using turbulent heat fluxes with common corrections, soil heat storage between the surface and the heat flux plate can improve the surface energy budget closure by about 6 to 7 percent, resulting in a closure of 82 to 83 percent at the SACOL site.
基金supported by the National Natural Science Foundation of China(41530745)the Central Asia Atmospheric Science Research Fund(CAAS201703)the Fundamental Research Funds for the Central Universities(lzujbky-2016-267)
文摘Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert.
基金supported by Special Fund for National Environmental Protection Industry Scientific Research in the Public Welfare (201209034)the National Natural Science Foundation of China (41371114)the Fundamental Research Funds for the Central Universities (lzujbky-2-14-275)
文摘The Badain Jaran Desert is the second-largest area of shifting sands in China. Our first measurements of the energy components and water vapor fluxes on a megadune using eddy covariance technology were taken from April 2012 to April 2013. The results indicate that the Iongwave and shortwave radiative fluxes exhibited large fluctuations and seasonal dynamics. The total radiative energy loss by Iongwave and shortwave radiation was greater on the megadune than from other underlying surfaces. The radiation partitioning was different in different seasons. The land-atmosphere interaction was primarily represented by the sensible heat flux. The average sensi- ble heat flux (40.1 W/m2) was much larger than the average latent heat flux (14.5 W/m2). Soil heat flux played an important role in the energy balance. The mean actual evaporation was 0.41 mm/d, and the cumulative actual evaporation was approximately 150 mm/a. The water vapor would transport downwardly and appear as dew con- densation water. The amount of precipitation determined the actual evaporation. The actual evaporation was sup- posed to be equal to the precipitation on the megadune and the precipitation was difficult to recharge the ground- water. Our study can provide a foundation for further research on land-atmosphere interactions in this area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91337212, 41175008)Cold and Arid Regions Environmental and Engineering Research Institute Youth Science Technology Service Network initiative (STS)+1 种基金the China Exchange Project (Grant No. 13CDP007)the National Natural Science Foundation of China (Grant Nos. 40825015 and 40675012)
文摘The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.
基金the National Natural Science Foundation of China (Nos.4177601891858101)+5 种基金the Key Research Program of Frontier SciencesCAS (No.QYZDBSSW-SYS023)the CAS-CSIRO Project Fund(No.133244KYSB20190031)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB01000000) to HU Shijianthe National Program on Global Change and Air-Sea Interaction (No.GASI-IPOVAI-04)the National Natural Science Foundation of China (No.41976009) to LIU Lingling
文摘Near-inertial oscillation is an important physical process transferring surface wind energy into deep ocean.We investigated the near-inertial kinetic energy(NIKE)variability using acoustic Doppler current profiler measurements from a mooring array deployed in the tropical western Pacific Ocean along 130°E at 8.5°N,11°N,12.6°N,15°N,and 17.5°N from September 2015 to January 2018.Spatial features,decay timescales,and significant seasonal variability of the observed NIKE were described.At the mooring sites of 17.5°N,15°N,and 12.6°N,the NIKE peaks occurred in boreal autumn and the NIKE troughs were observed in boreal spring.By contrast,the NIKE at 11°N and 8.5°N showed peaks in winter and troughs in summer.Tropical cyclones and strong wind events played an important role in the emergence of high-NIKE events and explained the seasonality and latitudinal characteristics of the observed NIKE.
基金supported by the National Key R&D Program of China[grant number 2016YFA0600703]the National Natural Science Foundation of China[grant numbers 41421004,41505073,and 41605059]the Young Talent Support Plan launched by the China Association for Science and Technology[grant number 2016QNRC001]
文摘Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-Southern Oscillation (ENSO).As one of the major terrestrial energy sources,the effect of solar wind energy flux in Earth's magnetosphere (Ein) on the climate has not drawn much attention,due to the big challenge associated with its quantitative estimation.Based on a new Ein index estimated by three-dimensional magnetohydrodynamic simulations from a previous study,this study reveals that Ein exhibits both quasi-decadal variability (periodic 11-year) and interannual (2-4 years) variability,which has rarely before been detected by SSN and F10.7.A significant interannual relationship between the annual mean Ein and subsequent early-winter ENSO is further revealed.Following high Ein,the sea level pressure in the subsequent early winter shows significant positive anomalies from Asia southward to the Maritime Continent,and significant negative anomalies over the Southeast and Northeast Pacific,resembling the Southern Oscillation.Meanwhile,significant upper-level anomalous convergence and divergence winds appear over the western and eastern Pacific,which is configured with significant lower-level anomalous divergence and convergence,indicating a weakening of the Walker circulation.Consequently,notable surface easterly wind anomalies prevail over the eastern tropical Pacific,leading to El Ni(n
文摘This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phase and active transformations, the three-phase model is transformed to two-phase equations by making both the stator and rotor as reference frames, finally converting to arbitrary reference frame, which is useful for the modelling of the axial flux machine. The torque, current, and voltage equations are expressed to improve the simulation reliability. Based on the developed equations, the mathematical model for the axial flux machine is developed using the MATLAB/Simulink. Starting with the axial flux motor model, when the load on the motor increases, how the parameters like torque, current, and speed of the motor vary are explored in this paper. Then for the axial flux generator model, when the wind speed exceeds the rated speed how the torque, line voltages, currents, power and speed of the generator behave are investigated and presented in this paper. The developed model in this paper could be extended to a twin-rotor axial flux synchronous machine, which will lead to the development of more efficient WECS.
基金supported by a project of the National Key Research and Development Program of China (Grant No.2016YFA0602501)a project of the National Natural Science Foundation of China (Grant Nos.41630532 and 41575093)
文摘The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.
基金Supported by the National Basic Research Program of China(2011CB811404)the Natural Science Foundation of China(40774081)+1 种基金the Specialized Research Fund for State Key LaboratoriesCAS-NSSC-135 project
文摘High-energy electron precipitation in the high latitude regions enhances the ionization of the atmosphere,and subsequently increases the atmospheric conductivities and the vertical electric field of the atmosphere near the ground as well.The High-Energy Electron Flux(HEEF) data measured by the Fengyun-3 meteorological satellite are analyzed together with the data of nearsurface atmospheric vertical electric field measured at the Russian Vostok Station.Three HEEF enhancements are identified and it is shown that when the HEEF increases to a certain level,the local atmospheric vertical electric field near the ground can increase substantially than usual.The response time of the electric field to HEEF enhancement is about 3.7 to 4 days.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21190040,91430217,and 11305176)
文摘Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.
基金supported by the Chinese Marine Renewable Special Fund(Nos.GHME2012ZC05,GHME 2013ZC01,GHME2013GC03,and GHME2014ZC01)the Natural Science Foundation of Tianjin(No.16JCYBJC20600)+7 种基金the Marine Environment Security Assurance Special Projects(Nos.2016YFC1401800,2016YFC140 2000,and 2016YFC1401400)the National Natural Science Foundation of China(Nos.41406011,41430963 and 41606005)the National Soft Science Research Plan(No.ZLY2015140)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA11010204,XDA11010201)the introduction of International Advanced Agricultural Science and Technology Plan Project(No.2015-Z61)the Fundamental Research Funds for the Central Universities(Nos.201564014,201562030)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)supported by Taishan scholars program
文摘La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.
基金supported by the National Key Research and Development Program of China (No. 2017YFA0604103)the Natural Science Foundation of China (NSFC) (No. 41476001)
文摘Internal waves play a crucial role in ocean mixing, and density perturbation and energy flux are essential quantities to investigate the generation and propagation of internal waves. This paper presents a methodology for calculating density perturbation and energy flux of internal waves only using a velocity field that is based on linearized equations for internal waves. The method was tested by numerical simulations of internal waves generated by tidal flowing over a Gaussian topography in a stratified fluid. The density perturbations and energy fluxes determined using our method that only used velocity data agreed with density perturbations and energy fluxes determined by the equation of state based on temperature data. The mean relative error(MRE) and root mean square error(RMSE) between the two methods were lower than 5% and 10% respectively. In addition, an experiment was performed to exam our method using the velocity field measured by Particle Image Velocimetry(PIV), and the setup of the experiment is consistent with the numerical model. The results of the experiments calculated by the methods using PIV data were also generally equal to those of the numerical model.
基金supported inpart by the National Basic Research Program of China(973 program2009CB421402)the NOAA Center for Atmospheric Sciences (NCAS) at Howard University(NA06OAR4810172)
文摘Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Community Land Model version 3.5 (CLM3.5), driven by the latest updated hybrid reanalysis-observational surface climate data from Princeton University, is used to obtain global distributions of surface energy fluxes during 1948 to 2000. Based on the climate data and simulation results, long-term trends and interannual variability (IAV) of both climatic variables and surface energy fluxes for this span of 50+ years are derived and analyzed. Regions with strong long-term trends and large IAV for both climatic variables and surface energy fluxes are identified. These analyses reveal seasonal variations in the spatial patterns of climate and surface fluxes; however, spatial patterns in trends and IAV for surface energy fluxes over the past ~50 years do not fully correspond to those for climatic variables, indicating complex responses of land surfaces to changes in the climatic forcings.
基金supported by the the Scientific Startup Foundation of Ocean University of China (No.0900-813586)
文摘High time resolution measurements of the electrostatic fluctuations and the turbulent particle and energy fluxes have been performed with a Langmuir probe array in the edge plasma in HT-7 tokamak. Bursty behaviour was observed in the time resolved turbulent fluxes with positive skewness and large kurtosis. The contribution of the large sporadic bursts to the transport losses were estimated. The analysis shows that the turbulent fluxes have different behaviour in different frequency domains and the probability distribution functions (PDFs) of the particle and energy fluxes present two distinct scaling ranges. All these are essentially consistent with the predictions of the self-organized criticality (SOC) model, though further studies are needed.