This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
It has been reported that the ply gap influences the ballistic resistance of spaced multi-ply fabric systems,but its working mechanism was not well-understood. This paper reports the experimental and numerical approac...It has been reported that the ply gap influences the ballistic resistance of spaced multi-ply fabric systems,but its working mechanism was not well-understood. This paper reports the experimental and numerical approaches and results of an investigation on the mechanisms that enable the improved ballistic performance of spaced multi-ply systems. Penetration tests were performed over a range of impact velocities ranging from 200 m/s to 400 m/s. The results confirmed that the ply gap is beneficial to the energy absorption capability of the systems. This is because the front plies tend to absorb more energy when they are not immediately constrained by the rear plies. During a ballistic event, the gap relieves the reflection of the compressive pulse, prolonging the projectile engagement time with the front plies;on the other hand, the rear plies become increasingly less active in dissipating energy as the gap increases.When the gap is sufficiently widened to avoid any interference between the plies before the failure of the front ply, the responses of the whole system no longer vary. It was also found that the ballistic performance of the spaced systems is influenced by ply thickness, impact velocity, and the stacking order of the ply gap.展开更多
In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis ...In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.展开更多
In order to improve the dust absorption performance of the reverse blowing pickup mouth, the gas-solid flow motion properties inside the reverse blowing pickup mouth were simulated by using computational fluid dynamic...In order to improve the dust absorption performance of the reverse blowing pickup mouth, the gas-solid flow motion properties inside the reverse blowing pickup mouth were simulated by using computational fluid dynamics( CFD) software,Fluent.The results show that both the front baffle inclination angle and the pressure drop across the pickup mouth have significant impacts on dust absorption performance. As the inclination angle is increased,there is an increase in the overall and grade removal efficiency. As the front baffle inclination angle or pressure drop is increased,there is an increase in the overall and grade removal efficiencies.However,pressure drop affects energy consumption. Front baffle inclination angle and pressure drop are optimized. Optimal inclination angle and pressure drop are 105° and 2 300 Pa respectively. Sample machine is made and measured,which further verifies the appropriateness of numerical simulation and practicability of optimum strategy.展开更多
We report on the successful fabrication of highly branched Cu S nanocrystals by laser-induced photochemical reaction.Surprisingly, the single-crystalline nature with preferential alignment of the(107) orientation ca...We report on the successful fabrication of highly branched Cu S nanocrystals by laser-induced photochemical reaction.Surprisingly, the single-crystalline nature with preferential alignment of the(107) orientation can be well improved during the moderate growth process. The branch length drastically increases from about 5 nm to 6 μm with an increase of photochemical reaction time(0-40 min). The absorption spectra of as-prepared Cu S nanodendrites show that localized surface plasmon resonance(LSPR) peaks can be modulated from about 1037 nm to 1700 nm with an increase of branch length. Our results have a promising potential for photodynamic therapy and biological imaging application.展开更多
A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship betwe...A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship between pressure, temperature and concentration of the lithium bromide solution have been analyzed. The result obtained indicates that the pressure of the high pressure generator and the temperature of the exhausted smoke are the most sensitive parameters. It is also found that the transition time from a full load to a part load condition is quite long, and part load relative cooling capacity is almost near the intermittent running time ratio and oil consumption ratio.展开更多
A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations ...A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations are employed to calcu- late the absorption spectrum of the Si nanostructure and maximize it by generating alternate designs. The results show that in the near-infrared region over 700 nm, the absorption of a pure Si nanoparticle is very low, but when the same nanoparticle is placed within an optimally designed gold nanostructure, its absorption cross section can be enhanced by more than two orders of magnitude in the near-infrared band.展开更多
In this study, performance assessment of absorption refrigeration cycle has been carried out under variable power sources namely electric, conventional fuel and renewable energy sources. The ammonia-water absorption c...In this study, performance assessment of absorption refrigeration cycle has been carried out under variable power sources namely electric, conventional fuel and renewable energy sources. The ammonia-water absorption cycle was used in this work, the temperatures at each point in the cycle such as generator, absorber, evaporator and condenser have been measured and with using absorption device system. The coefficient of performance and efficiency of the plant were measured and then compared. The results showed that when the cycle driven by electricity, the coefficient of performance varied 0.694 to 1.032 along the test time and the generator temperature changes from 48.1°C to 101.5°C with the average efficiency of 57.1% and average coefficient of performance of 0.78. When methane used as a fuel to generate power the coefficient of performance varied between 0.686 and 0.94 under the generator temperature of 123.3°C and 127.4°C and average efficiency of 40.02% with coefficient of performance of 0.735. Solar energy used as the alternative source of power which is the clean and safe power source and when the plant driven by the solar thermal energy, the coefficient of performance reached to 0.801 under the generator temperature of 91°C, but the system efficiency about 11.68% along the test time. Solar energy can be used efficiently and replaced the conventional power sources to drive the absorption refrigeration unit.展开更多
Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the hi...Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.展开更多
Energy-absorbing rockbolts have been widely adopted in burst-prone excavation support, and their serviceability is closely related to the frequency and magnitude of seismic events. In this research, the splittube drop...Energy-absorbing rockbolts have been widely adopted in burst-prone excavation support, and their serviceability is closely related to the frequency and magnitude of seismic events. In this research, the splittube drop test with varying impact energy was conducted to reproduce the dynamic performance of MP1rockbolts under a wide range of seismic event magnitudes. The test results showed that the impact process could be subdivided into four distinct stages, i.e. mobilization, strain hardening, plastic flow(ductile), and rebound stage, of which strain hardening and plastic flow are the primary energy absorbing stages. As the impact energy per drop increases from 8.1 to 46.7 k J, the strain rate of the shank varies between 1.20 and 2.70 s^(-1), and the average impact load is between 240 and 270kN, which may be considered as constant. The MP1 rockbolt has a cumulative maximum energy absorption(CMEA) of 31.9–40.0 k J/m, with an average of 35.0 k J/m, and the elongation rate is 11.4%–14.7%, with an average of 12.7%, both of which are negatively correlated with the impact energy per drop. Regression analysis shows that energy absorption and shank elongation, as well as momentum input and impact duration,conform to the linear relationship. The complete dynamic capacity envelope of MP1 rockbolts is proposed, which reflects the dynamic bearing capacity, elongation, and distinct stages. This study is helpful to better understand the dynamic characteristics of energy-absorbing rockbolts and assist design engineers in robust reinforcement systems design to mitigate rockburst damage in seismically active underground excavations.展开更多
The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on t...The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on the ballistic resistance of aramid plain fabrics is investigated by varying the seaming process.The ballistic experiment uses 8 mm diameter spherical projectiles to impact different fabric sample targets with velocities of 230 m/s and 400 m/s.The ballistic performance of seamed and unseamed fabrics is characterized by the specific energy absorption(SEA)values of the fabrics.The results show that the seamed fabric has a better energy absorption capacity than the unseamed fabric,e.g.,the SEA of sample 5(seaming lines on every four yarns in a single-ply fabric system)is 135%of sample 1(plain weave without thread seaming).In the single-layer system,the effect of the seaming technique on the energy absorption of the fabric in significant when considering seaming density,seaming orientation,seaming distance,and seaming material on the plain fabric;In addition,it is found that in multi-layer systems,seamed panels(e.g.,sample 7)exhibit better ballistic performance than multi-layer fabrics(e.g.,sample 2),and the specific energy absorption of sample 7 is approximately 156%and 200%of sample 6 and sample 2,respectively.Meanwhile,the energy absorption of the fabric decreases with the increase of impact velocity,which is related to the energy absorption mechanism of the soft fabric system at high impact velocities.The yarn pull-out tests shows that the constraint provided by the seaming thread increases the friction between the fabric-forming yarns.However,when the constraint exceeds a certain level,it is detrimental to the energy absorption of the fabric,which may be due to the overconstraint of yarn mobility.展开更多
Through quantitative statistics and morphological characterization of ceramic fragments for ceramic composite bulletproof insert plates(CCBIPs),distribution characteristics of ceramic fragments within a specific size ...Through quantitative statistics and morphological characterization of ceramic fragments for ceramic composite bulletproof insert plates(CCBIPs),distribution characteristics of ceramic fragments within a specific size range were analyzed for different Armor Piercing Incendiary(API)and shot times.To quantitatively evaluate the effect of energy absorption for ceramic plates,a model of energy absorption during penetration for CCBIPs was established based on statistics of the size distribution of ceramic fragments(SDCF).Variation in the SDCF and its influence on energy absorption for CCBIPs were investigated.The results indicate that the distribution feature of ceramic fragments in the range of 0.25-2.25 mm is Gaussian distribution.Compared with Type 56 of API(56-API),ceramic fragments formed by 53-API with higher kinetic energy possess more quantity and more concentrated distribution,whose average equivalence size decreases by 6.5%,corresponding to increasing by 83.9%of estimated energy absorption.Besides,the ability of CCBIPs to resist the third shot is significantly weakened,whose estimated energy absorption decreases by 58.8%compared with the first shot.More concentrated distribution and fewer fragments are formed after the third shot,the average equivalence size of ceramic fragments increases by 6.9%,which may attribute to the micro-cracks induced by the previous two shots.展开更多
The rapid development of additive manufacturing technology has offered a new avenue for designing and fabricating high wave-absorbing meta structures.In this study,the mechanical properties and broadband absorption pe...The rapid development of additive manufacturing technology has offered a new avenue for designing and fabricating high wave-absorbing meta structures.In this study,the mechanical properties and broadband absorption performance of Poly-Ether-Ether-Ketone(PEEK)–based electromagnetic wave–absorbing composite materials was investigated.The high-performance polymer PEEK was used as the matrix,and the materials with electromagnetic wave loss,such as reduced graphene oxide,Carbonyl Iron(CI),and Flake CI(FCI),were used as absorbers.Based on the theory of impedance matching,a wave-absorbing structure with a gradual impedance gradient was designed and printed.The test results showed that at the 2.0–18.0 GHz frequency band,the coverage rate of the effective absorption bandwidth was up to 72.0%,the average optimal reflectivity was–18.09 dB,and the wide-angle absorption range was 0°–30°.The advantages of additive manufacturing technology in designing and fabricating wave-absorbing structures are presented,demonstrating that the technology is an effective method for creating broadband absorbing structures.展开更多
A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle fo...A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.展开更多
Developing lightweight and broadband microwave absorbers for dealing with serious electromagnetic radiation pollution is a great challenge.Here,a novel Fe-Co/N-doped carbon/reduced graphene oxide(Fe-Co/NC/rGO)composit...Developing lightweight and broadband microwave absorbers for dealing with serious electromagnetic radiation pollution is a great challenge.Here,a novel Fe-Co/N-doped carbon/reduced graphene oxide(Fe-Co/NC/rGO)composite with hierarchically porous structure was designed and synthetized by in situ growth of Fe-doped Cobased metal organic frameworks(Co-MOF)on the sheets of porous cocoon-like rGO followed by calcination.The Fe-Co/NC composites are homogeneously distributed on the sheets of porous rGO.The Fe-Co/NC/rGO composite with multiple components(Fe/Co/NC/rGO)causes magnetic loss,dielectric loss,resistance loss,interfacial polarization,and good impedance matching.The hierarchically porous structure of the Fe-Co/NC/rGO enhances the multiple reflections and scattering of microwaves.Compared with the Co/NC and Fe-Co/NC,the hierarchically porous Fe-Co/NC/rGO composite exhibits much better microwave absorption performances due to the rational composition and porous structural design.Its minimum reflection loss(RLmin)reaches?43.26 dB at 11.28 GHz with a thickness of 2.5 mm,and the effective absorption frequency(RL≤?10 dB)is up to 9.12 GHz(8.88-18 GHz)with the same thickness of 2.5 mm.Moreover,the widest effective bandwidth of 9.29 GHz occurs at a thickness of 2.63 mm.This work provides a lightweight and broadband microwave absorbing material while offering a new idea to design excellent microwave absorbers with multicomponent and hierarchically porous structures.展开更多
The intestinal absorption ofberberine (Ber) and its structural modified compound 8-hydroxy dihydroberberine (Hdber) was compared, and their effects on the intestinal absorption of sugar by per- fusion experiment w...The intestinal absorption ofberberine (Ber) and its structural modified compound 8-hydroxy dihydroberberine (Hdber) was compared, and their effects on the intestinal absorption of sugar by per- fusion experiment were investigated in order to reveal the mechanism of low dose and high activity of Hdber in the treatment of hyperglycemia. The absorption of Hdber and Ber in rat small intestine was measured by in situ perfusion. High performance liquid chromatography (HPLC) was used to determine the concentrations of Hdber and Ber. In situ perfusion method was also used to study the effects of Hdber and Ber on sugar intestinal absorption. Glucose oxidase method and UV spectrophotometry were applied to examine the concentrations of glucose and sucrose in the perfusion fluid. The results showed that the absorption rate of Ber in the small intestine was lower than I0%, but that of Hdber was larger than 70%. Both Hdber and Ber inhibited the absorption of glucose and sucrose at the doses of 10 and 20 ~tg/mL. However, Hdber presented stronger activity than Bet (P〈0.01). It is suggested that Hdber is ab- sorbed easily in rat small intestine and that its inhibitory effect on the absorption of sugar is better than Ber.展开更多
High producing dairy cows generally receive in the diet up to 5–6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics;however, dietary fat is important for dairy cows as demo...High producing dairy cows generally receive in the diet up to 5–6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics;however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids(FA). Several FA are highly bioactive, especially by affecting the transcriptome;thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen,molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons;uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However,large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.展开更多
We adopted a green,economical and simple method in which konjac glucomannan (KGM) was used as a carrier to support CNTs to construct a three-dimensional structure filled with epoxy resin to improve the absorbing perfo...We adopted a green,economical and simple method in which konjac glucomannan (KGM) was used as a carrier to support CNTs to construct a three-dimensional structure filled with epoxy resin to improve the absorbing performance of epoxy resin.Through the reflection of the internal multi-level pore structure and the dielectric loss effect of CNTs,the dissipation and absorption of electromagnetic waves are realized.This KGM derived CNTs foam exhibits high specific microwave absorption performance with a minimum absorption of-25.2 dB at 11.3 GHz and a qualified bandwidth of around 2.89 GHz (RL≤-10 dB),which is achieved by KDCF5/Epoxy with the coating layer thickness of 1.8 mm.We provide a novel and cost-effective method to achieve excellent absorbing performance under thin thickness and low load.The CNTs foam also has a lower density (6.5 mg/cm^(3)) and can improve the absorbing properties of the epoxy while maintaining its various advantages,thereby expanding the application range of the epoxy resin.展开更多
A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating ...A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.展开更多
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51708553, 12202498, 52371299,12302187)Natural Science Foundations of Jiangsu Province (Grant No. BK20210438)Knowledge Innovation Program of WuhanShuguang Project (Grant No. 202201080102)。
文摘It has been reported that the ply gap influences the ballistic resistance of spaced multi-ply fabric systems,but its working mechanism was not well-understood. This paper reports the experimental and numerical approaches and results of an investigation on the mechanisms that enable the improved ballistic performance of spaced multi-ply systems. Penetration tests were performed over a range of impact velocities ranging from 200 m/s to 400 m/s. The results confirmed that the ply gap is beneficial to the energy absorption capability of the systems. This is because the front plies tend to absorb more energy when they are not immediately constrained by the rear plies. During a ballistic event, the gap relieves the reflection of the compressive pulse, prolonging the projectile engagement time with the front plies;on the other hand, the rear plies become increasingly less active in dissipating energy as the gap increases.When the gap is sufficiently widened to avoid any interference between the plies before the failure of the front ply, the responses of the whole system no longer vary. It was also found that the ballistic performance of the spaced systems is influenced by ply thickness, impact velocity, and the stacking order of the ply gap.
基金The National Natural Science Foundation of China(No.51176029)
文摘In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.
基金National Natural Science Foundation of China(No.51375202)
文摘In order to improve the dust absorption performance of the reverse blowing pickup mouth, the gas-solid flow motion properties inside the reverse blowing pickup mouth were simulated by using computational fluid dynamics( CFD) software,Fluent.The results show that both the front baffle inclination angle and the pressure drop across the pickup mouth have significant impacts on dust absorption performance. As the inclination angle is increased,there is an increase in the overall and grade removal efficiency. As the front baffle inclination angle or pressure drop is increased,there is an increase in the overall and grade removal efficiencies.However,pressure drop affects energy consumption. Front baffle inclination angle and pressure drop are optimized. Optimal inclination angle and pressure drop are 105° and 2 300 Pa respectively. Sample machine is made and measured,which further verifies the appropriateness of numerical simulation and practicability of optimum strategy.
基金Project supported by National Natural Science Foundation of China(Grant Nos.11575102,11105085,11405098,and 11375108)the Fundamental Research Funds of Shandong University,China(Grant No.2015JC007)
文摘We report on the successful fabrication of highly branched Cu S nanocrystals by laser-induced photochemical reaction.Surprisingly, the single-crystalline nature with preferential alignment of the(107) orientation can be well improved during the moderate growth process. The branch length drastically increases from about 5 nm to 6 μm with an increase of photochemical reaction time(0-40 min). The absorption spectra of as-prepared Cu S nanodendrites show that localized surface plasmon resonance(LSPR) peaks can be modulated from about 1037 nm to 1700 nm with an increase of branch length. Our results have a promising potential for photodynamic therapy and biological imaging application.
文摘A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship between pressure, temperature and concentration of the lithium bromide solution have been analyzed. The result obtained indicates that the pressure of the high pressure generator and the temperature of the exhausted smoke are the most sensitive parameters. It is also found that the transition time from a full load to a part load condition is quite long, and part load relative cooling capacity is almost near the intermittent running time ratio and oil consumption ratio.
基金Project supported by the National Key Basic Research and Development Program of China(Grant No.2013CB632704)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.Y1 V2013L11)
文摘A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations are employed to calcu- late the absorption spectrum of the Si nanostructure and maximize it by generating alternate designs. The results show that in the near-infrared region over 700 nm, the absorption of a pure Si nanoparticle is very low, but when the same nanoparticle is placed within an optimally designed gold nanostructure, its absorption cross section can be enhanced by more than two orders of magnitude in the near-infrared band.
文摘In this study, performance assessment of absorption refrigeration cycle has been carried out under variable power sources namely electric, conventional fuel and renewable energy sources. The ammonia-water absorption cycle was used in this work, the temperatures at each point in the cycle such as generator, absorber, evaporator and condenser have been measured and with using absorption device system. The coefficient of performance and efficiency of the plant were measured and then compared. The results showed that when the cycle driven by electricity, the coefficient of performance varied 0.694 to 1.032 along the test time and the generator temperature changes from 48.1°C to 101.5°C with the average efficiency of 57.1% and average coefficient of performance of 0.78. When methane used as a fuel to generate power the coefficient of performance varied between 0.686 and 0.94 under the generator temperature of 123.3°C and 127.4°C and average efficiency of 40.02% with coefficient of performance of 0.735. Solar energy used as the alternative source of power which is the clean and safe power source and when the plant driven by the solar thermal energy, the coefficient of performance reached to 0.801 under the generator temperature of 91°C, but the system efficiency about 11.68% along the test time. Solar energy can be used efficiently and replaced the conventional power sources to drive the absorption refrigeration unit.
基金This study has been funded by the National Natural Science Foundation of China(Grant No.41941018)and the Second Tibetan Plateau Scientific Expedition and Research Grant(Grant No.2019QZKK0708).
文摘Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.
基金CCTEG Coal Mining Research Institute(No.TDKC-2022-MS-01)the National Natural Science Foundation of China(No.52274123)the Mining Education Australia(MEA),Collaborative Research Grant Scheme(No.RS-59041).
文摘Energy-absorbing rockbolts have been widely adopted in burst-prone excavation support, and their serviceability is closely related to the frequency and magnitude of seismic events. In this research, the splittube drop test with varying impact energy was conducted to reproduce the dynamic performance of MP1rockbolts under a wide range of seismic event magnitudes. The test results showed that the impact process could be subdivided into four distinct stages, i.e. mobilization, strain hardening, plastic flow(ductile), and rebound stage, of which strain hardening and plastic flow are the primary energy absorbing stages. As the impact energy per drop increases from 8.1 to 46.7 k J, the strain rate of the shank varies between 1.20 and 2.70 s^(-1), and the average impact load is between 240 and 270kN, which may be considered as constant. The MP1 rockbolt has a cumulative maximum energy absorption(CMEA) of 31.9–40.0 k J/m, with an average of 35.0 k J/m, and the elongation rate is 11.4%–14.7%, with an average of 12.7%, both of which are negatively correlated with the impact energy per drop. Regression analysis shows that energy absorption and shank elongation, as well as momentum input and impact duration,conform to the linear relationship. The complete dynamic capacity envelope of MP1 rockbolts is proposed, which reflects the dynamic bearing capacity, elongation, and distinct stages. This study is helpful to better understand the dynamic characteristics of energy-absorbing rockbolts and assist design engineers in robust reinforcement systems design to mitigate rockburst damage in seismically active underground excavations.
基金supported by the National Natural Science Foundation of China(11902008)Hubei Province Science and Technology Project(2021BAA069)。
文摘The ballistic perforation response of composite fabrics made by combining plain weaves with seaming technology is reported and compared with conventional unseamed plain fabrics.The effect of the seaming technique on the ballistic resistance of aramid plain fabrics is investigated by varying the seaming process.The ballistic experiment uses 8 mm diameter spherical projectiles to impact different fabric sample targets with velocities of 230 m/s and 400 m/s.The ballistic performance of seamed and unseamed fabrics is characterized by the specific energy absorption(SEA)values of the fabrics.The results show that the seamed fabric has a better energy absorption capacity than the unseamed fabric,e.g.,the SEA of sample 5(seaming lines on every four yarns in a single-ply fabric system)is 135%of sample 1(plain weave without thread seaming).In the single-layer system,the effect of the seaming technique on the energy absorption of the fabric in significant when considering seaming density,seaming orientation,seaming distance,and seaming material on the plain fabric;In addition,it is found that in multi-layer systems,seamed panels(e.g.,sample 7)exhibit better ballistic performance than multi-layer fabrics(e.g.,sample 2),and the specific energy absorption of sample 7 is approximately 156%and 200%of sample 6 and sample 2,respectively.Meanwhile,the energy absorption of the fabric decreases with the increase of impact velocity,which is related to the energy absorption mechanism of the soft fabric system at high impact velocities.The yarn pull-out tests shows that the constraint provided by the seaming thread increases the friction between the fabric-forming yarns.However,when the constraint exceeds a certain level,it is detrimental to the energy absorption of the fabric,which may be due to the overconstraint of yarn mobility.
基金financially supported by the National Key Research&Development Project(2017YFB1103505)the Military Logistics Research Program(XXXC002)of China。
文摘Through quantitative statistics and morphological characterization of ceramic fragments for ceramic composite bulletproof insert plates(CCBIPs),distribution characteristics of ceramic fragments within a specific size range were analyzed for different Armor Piercing Incendiary(API)and shot times.To quantitatively evaluate the effect of energy absorption for ceramic plates,a model of energy absorption during penetration for CCBIPs was established based on statistics of the size distribution of ceramic fragments(SDCF).Variation in the SDCF and its influence on energy absorption for CCBIPs were investigated.The results indicate that the distribution feature of ceramic fragments in the range of 0.25-2.25 mm is Gaussian distribution.Compared with Type 56 of API(56-API),ceramic fragments formed by 53-API with higher kinetic energy possess more quantity and more concentrated distribution,whose average equivalence size decreases by 6.5%,corresponding to increasing by 83.9%of estimated energy absorption.Besides,the ability of CCBIPs to resist the third shot is significantly weakened,whose estimated energy absorption decreases by 58.8%compared with the first shot.More concentrated distribution and fewer fragments are formed after the third shot,the average equivalence size of ceramic fragments increases by 6.9%,which may attribute to the micro-cracks induced by the previous two shots.
基金the National Natural Science Foundation of China(No.12272298).
文摘The rapid development of additive manufacturing technology has offered a new avenue for designing and fabricating high wave-absorbing meta structures.In this study,the mechanical properties and broadband absorption performance of Poly-Ether-Ether-Ketone(PEEK)–based electromagnetic wave–absorbing composite materials was investigated.The high-performance polymer PEEK was used as the matrix,and the materials with electromagnetic wave loss,such as reduced graphene oxide,Carbonyl Iron(CI),and Flake CI(FCI),were used as absorbers.Based on the theory of impedance matching,a wave-absorbing structure with a gradual impedance gradient was designed and printed.The test results showed that at the 2.0–18.0 GHz frequency band,the coverage rate of the effective absorption bandwidth was up to 72.0%,the average optimal reflectivity was–18.09 dB,and the wide-angle absorption range was 0°–30°.The advantages of additive manufacturing technology in designing and fabricating wave-absorbing structures are presented,demonstrating that the technology is an effective method for creating broadband absorbing structures.
基金The National Natural Science Foundation of China(No.50776016)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.
基金the National Natural Science Foundation of China(No.21376029)and the Analysis&Testing Center,Beijing Institute of Technology for sponsoring this researchsupported by Beijing Key Laboratory for Chemical Power Source and Green Catalysis,Beijing Institute of Technology.
文摘Developing lightweight and broadband microwave absorbers for dealing with serious electromagnetic radiation pollution is a great challenge.Here,a novel Fe-Co/N-doped carbon/reduced graphene oxide(Fe-Co/NC/rGO)composite with hierarchically porous structure was designed and synthetized by in situ growth of Fe-doped Cobased metal organic frameworks(Co-MOF)on the sheets of porous cocoon-like rGO followed by calcination.The Fe-Co/NC composites are homogeneously distributed on the sheets of porous rGO.The Fe-Co/NC/rGO composite with multiple components(Fe/Co/NC/rGO)causes magnetic loss,dielectric loss,resistance loss,interfacial polarization,and good impedance matching.The hierarchically porous structure of the Fe-Co/NC/rGO enhances the multiple reflections and scattering of microwaves.Compared with the Co/NC and Fe-Co/NC,the hierarchically porous Fe-Co/NC/rGO composite exhibits much better microwave absorption performances due to the rational composition and porous structural design.Its minimum reflection loss(RLmin)reaches?43.26 dB at 11.28 GHz with a thickness of 2.5 mm,and the effective absorption frequency(RL≤?10 dB)is up to 9.12 GHz(8.88-18 GHz)with the same thickness of 2.5 mm.Moreover,the widest effective bandwidth of 9.29 GHz occurs at a thickness of 2.63 mm.This work provides a lightweight and broadband microwave absorbing material while offering a new idea to design excellent microwave absorbers with multicomponent and hierarchically porous structures.
基金supported by grants from the National Natural Science Foundation of China(No.81173370)the Natural Science Foundation of Hubei Province,China(No.2012FFB02434)
文摘The intestinal absorption ofberberine (Ber) and its structural modified compound 8-hydroxy dihydroberberine (Hdber) was compared, and their effects on the intestinal absorption of sugar by per- fusion experiment were investigated in order to reveal the mechanism of low dose and high activity of Hdber in the treatment of hyperglycemia. The absorption of Hdber and Ber in rat small intestine was measured by in situ perfusion. High performance liquid chromatography (HPLC) was used to determine the concentrations of Hdber and Ber. In situ perfusion method was also used to study the effects of Hdber and Ber on sugar intestinal absorption. Glucose oxidase method and UV spectrophotometry were applied to examine the concentrations of glucose and sucrose in the perfusion fluid. The results showed that the absorption rate of Ber in the small intestine was lower than I0%, but that of Hdber was larger than 70%. Both Hdber and Ber inhibited the absorption of glucose and sucrose at the doses of 10 and 20 ~tg/mL. However, Hdber presented stronger activity than Bet (P〈0.01). It is suggested that Hdber is ab- sorbed easily in rat small intestine and that its inhibitory effect on the absorption of sugar is better than Ber.
文摘High producing dairy cows generally receive in the diet up to 5–6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics;however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids(FA). Several FA are highly bioactive, especially by affecting the transcriptome;thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen,molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons;uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However,large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
文摘We adopted a green,economical and simple method in which konjac glucomannan (KGM) was used as a carrier to support CNTs to construct a three-dimensional structure filled with epoxy resin to improve the absorbing performance of epoxy resin.Through the reflection of the internal multi-level pore structure and the dielectric loss effect of CNTs,the dissipation and absorption of electromagnetic waves are realized.This KGM derived CNTs foam exhibits high specific microwave absorption performance with a minimum absorption of-25.2 dB at 11.3 GHz and a qualified bandwidth of around 2.89 GHz (RL≤-10 dB),which is achieved by KDCF5/Epoxy with the coating layer thickness of 1.8 mm.We provide a novel and cost-effective method to achieve excellent absorbing performance under thin thickness and low load.The CNTs foam also has a lower density (6.5 mg/cm^(3)) and can improve the absorbing properties of the epoxy while maintaining its various advantages,thereby expanding the application range of the epoxy resin.
文摘A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.