A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa...A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).展开更多
For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For ...For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.展开更多
A method for quantitative determination of fish sperm deoxyribonucleic acid(fsDNA)was developed by using titanium dioxide(TiO2)as an adsorbent and near-infrared diffuse reflectance spectroscopy(NIRDRS).The selective e...A method for quantitative determination of fish sperm deoxyribonucleic acid(fsDNA)was developed by using titanium dioxide(TiO2)as an adsorbent and near-infrared diffuse reflectance spectroscopy(NIRDRS).The selective enrichment of fsDNA was proved by comparing the adsorption efficiency of bovine serum albumin,tyrosine and tryptophan,and the low adsorption background of TiO2 was illustrated by comparing the spectra of four commonly-used inorganic adsorbents(alkaline aluminium oxide,neutral aluminium oxide,nano-hydroxyapatite and silica).The spectral feature of fsDNA can be clearly observed in the spectrum of the sample.Partial least squares(PLS)model was built for quantitative determination of fsDNA using 28 solutions,and 13 solutions with interferences were used for validation of the model.The results showed that the correlation coefficient(R)between the predicted and the reference concentration is 0.9727 and the recoveries of the validation samples are in the range of 98.2%-100.7%.展开更多
视频图像中脸像检测是近年来视觉图像检测和模式识别领域的研究热点。提出一种基于实时预测学习分类的脸像快速检测算法,即ARMA-Boost算法。首先根据脸像位置先验信息,利用ARMA模型(auto-regressive and moving average model)预测脸像...视频图像中脸像检测是近年来视觉图像检测和模式识别领域的研究热点。提出一种基于实时预测学习分类的脸像快速检测算法,即ARMA-Boost算法。首先根据脸像位置先验信息,利用ARMA模型(auto-regressive and moving average model)预测脸像位置区域,然后采用AdaBoost算法对预测区域进行脸像检测。该方法在时间维度对AdaBoost算法进行扩展,减小脸像搜索范围,提高检测效率。利用该方法对离线视频文件和CCD图像传感器实时脸像视频进行检测,实验结果表明,与支持向量机、传统AdaBoost和基于优化肤色模型的AdaBoost改进算法相比,ARMA-Boost算法脸像检测准确率高,实时性更好,可以对视频脸像进行快速检测应用。展开更多
为了克服当前图像匹配方法主要通过测量距离的方法来实现图像匹配,忽略了图像间的相似度,导致算法存在错误匹配较多以及鲁棒性较差的问题。本文提出了基于相似度模型耦合角度制约规则的图像匹配算法。采用FAST检测方法对图像特征进行检...为了克服当前图像匹配方法主要通过测量距离的方法来实现图像匹配,忽略了图像间的相似度,导致算法存在错误匹配较多以及鲁棒性较差的问题。本文提出了基于相似度模型耦合角度制约规则的图像匹配算法。采用FAST检测方法对图像特征进行检测,快速获取鲁棒特征点,以改善算法的匹配正确率。随后,利用SURF特征描述机制,通过计算特征圆域内的Haar小波响应值,对特征点进行描述。引入结构相似度SSIM(structural similarity index measurement)模型,将其与欧氏距离模型相结合,构造相似度模型,从结构相似度与测量距离两方面出发,将特征点进行粗匹配。最后,利用特征点的余弦关系,求取特征点间角度,建立角度制约规则,对粗匹配结果完成优化。实验结果显示:与典型的匹配方法相比,该算法具有更好的匹配性能较好,在多种几何变换下仍具有理想的匹配精度。展开更多
基金Supported by the National Natural Science Foundation of China(61103157)
文摘A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).
基金This work was supported by the National Natural Science Foundation(NNSF)of China under grant no.61673386,62073335the China Postdoctoral Science Foundation(2017M613201,2019T120944).
文摘For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.
基金supported by the National Natural Science Foundation of China(No.21775076)the fundamental research funds for central universities(China)
文摘A method for quantitative determination of fish sperm deoxyribonucleic acid(fsDNA)was developed by using titanium dioxide(TiO2)as an adsorbent and near-infrared diffuse reflectance spectroscopy(NIRDRS).The selective enrichment of fsDNA was proved by comparing the adsorption efficiency of bovine serum albumin,tyrosine and tryptophan,and the low adsorption background of TiO2 was illustrated by comparing the spectra of four commonly-used inorganic adsorbents(alkaline aluminium oxide,neutral aluminium oxide,nano-hydroxyapatite and silica).The spectral feature of fsDNA can be clearly observed in the spectrum of the sample.Partial least squares(PLS)model was built for quantitative determination of fsDNA using 28 solutions,and 13 solutions with interferences were used for validation of the model.The results showed that the correlation coefficient(R)between the predicted and the reference concentration is 0.9727 and the recoveries of the validation samples are in the range of 98.2%-100.7%.
文摘视频图像中脸像检测是近年来视觉图像检测和模式识别领域的研究热点。提出一种基于实时预测学习分类的脸像快速检测算法,即ARMA-Boost算法。首先根据脸像位置先验信息,利用ARMA模型(auto-regressive and moving average model)预测脸像位置区域,然后采用AdaBoost算法对预测区域进行脸像检测。该方法在时间维度对AdaBoost算法进行扩展,减小脸像搜索范围,提高检测效率。利用该方法对离线视频文件和CCD图像传感器实时脸像视频进行检测,实验结果表明,与支持向量机、传统AdaBoost和基于优化肤色模型的AdaBoost改进算法相比,ARMA-Boost算法脸像检测准确率高,实时性更好,可以对视频脸像进行快速检测应用。
文摘为了克服当前图像匹配方法主要通过测量距离的方法来实现图像匹配,忽略了图像间的相似度,导致算法存在错误匹配较多以及鲁棒性较差的问题。本文提出了基于相似度模型耦合角度制约规则的图像匹配算法。采用FAST检测方法对图像特征进行检测,快速获取鲁棒特征点,以改善算法的匹配正确率。随后,利用SURF特征描述机制,通过计算特征圆域内的Haar小波响应值,对特征点进行描述。引入结构相似度SSIM(structural similarity index measurement)模型,将其与欧氏距离模型相结合,构造相似度模型,从结构相似度与测量距离两方面出发,将特征点进行粗匹配。最后,利用特征点的余弦关系,求取特征点间角度,建立角度制约规则,对粗匹配结果完成优化。实验结果显示:与典型的匹配方法相比,该算法具有更好的匹配性能较好,在多种几何变换下仍具有理想的匹配精度。