Traditional moxibustion therapy can stimulate heat and blood-vessel expansion and advance blood circulation.In the present study,a novel noncontact-type thermal therapeutic system was developed using a near-infrared l...Traditional moxibustion therapy can stimulate heat and blood-vessel expansion and advance blood circulation.In the present study,a novel noncontact-type thermal therapeutic system was developed using a near-infrared laser diode.The device allows direct interaction of infrared laser light with the skin,thereby facilitating a controlled temperature distribution on the skin and the deep tissues below the skin.While using a tissue-mimicking phantom as a substitute for real skin,the most important optical and thermal parameters are the absorption/attenuation coefficient,thermal conductivity,and specic heat.We found that these parameters can be manipulated by varying the agar-gel concentration.Hence,a multilayer tissue-mimicking phantom was fabricated using different agar-gel concentrations.Thermal imaging and thermocouples were used to measure the temperature distribution inside the phantom during laser irradiation.The temperature increased with the increase in the agar-gel concentration and reached a maximum value under the tissue phantom surface.To induce a similar thermal effect of moxibustion therapy,controlled laser-irradiation parameters such as output power,wavelength and pulse width were obtained from further analysis of the temperature distribution.From the known optothermal properties of the patient's skin,the temperature distribution inside the tissue was manipulated by optimizing the laser parameters.This study can contribute to patient-specic thermal therapy in clinics.展开更多
Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficienc...Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of tr...The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection...Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.展开更多
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi...After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.展开更多
Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct in...Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.展开更多
Organic lasers that emit light in the deep-red and near-infrared(NIR)region are of essential importance in laser communication,night vision,bioimaging,and information-secured displays but are still challenging because...Organic lasers that emit light in the deep-red and near-infrared(NIR)region are of essential importance in laser communication,night vision,bioimaging,and information-secured displays but are still challenging because of the lack of proper gain materials.Herein,a new molecular design strategy that operates by merging two excited-state intramolecular proton transfer-active molecules into one excited-state double proton transfer(ESDPT)-active molecule was demonstrated.Based on this new strategy,three new materials were designed and synthesized with two groups of intramolecular resonance-assisted hydrogen bonds,in which the ESDPT process was proven to proceed smoothly based on theoretical calculations and experimental results of steady-state and transient spectra.Benefiting from the effective six-level system constructed by the ESDPT process,all newly designed materials showed low threshold laser emissions at approximately 720 nm when doped in PS microspheres,which in turn proved the existence of the second proton transfer process.More importantly,our well-developed NIR organic lasers showed high laser stability,which can maintain high laser intensity after 12000 pulse lasing,which is essential in practical applications.This work provides a simple and effective method for the development of NIR organic gain materials and demonstrates the ESDPT mechanism for NIR lasing.展开更多
Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximatel...Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.展开更多
Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–br...Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.展开更多
The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried ...The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
We report on the successful fabrication of highly branched Cu S nanocrystals by laser-induced photochemical reaction.Surprisingly, the single-crystalline nature with preferential alignment of the(107) orientation ca...We report on the successful fabrication of highly branched Cu S nanocrystals by laser-induced photochemical reaction.Surprisingly, the single-crystalline nature with preferential alignment of the(107) orientation can be well improved during the moderate growth process. The branch length drastically increases from about 5 nm to 6 μm with an increase of photochemical reaction time(0-40 min). The absorption spectra of as-prepared Cu S nanodendrites show that localized surface plasmon resonance(LSPR) peaks can be modulated from about 1037 nm to 1700 nm with an increase of branch length. Our results have a promising potential for photodynamic therapy and biological imaging application.展开更多
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE ca...BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.展开更多
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing...Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.展开更多
Objective:Laparoscopic pelvic lymph node dissection(LPND),which is an effective therapy for endometrial cancer,is challenging because of the complexity of the procedure and the occurrence of postoperative complication...Objective:Laparoscopic pelvic lymph node dissection(LPND),which is an effective therapy for endometrial cancer,is challenging because of the complexity of the procedure and the occurrence of postoperative complications.This study aimed to explore whether indocyanine green(ICG)-enhanced nearinfrared(NIR)fluorescence-guided LPND is superior to LPND in the context of early-stage endometrial carcinoma.Methods:In this retrospective study,we included the medical records of 190 patients with early-stage endometrioid adenocarcinoma who underwent LPND at the Department of Obstetrics and Gynecology,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine between January 2019 and January 2021.Depending on whether ICG-enhanced NIR fluorescence guidance was used,the patients were assigned to the ICG group or non-ICG group.Patients were followed-up for one year after surgery.Data on demographic characteristics,pathological results,operative outcomes,and complications were collected and analyzed.Results:The baseline characteristics were comparable between the ICG group and non-ICG group,including age,BMI,pregnancy history,and preoperative hemoglobin.For surgical outcomes,the patients in ICG group had significantly lower intraoperative blood loss(50 mL vs.120 mL,p<0.001),less postoperative pelvic drainage time(4.14±1.44 d vs.5.70±1.89 d,p¼0.001),shorter duration of hospital stay(5.26±1.41 d vs.7.37±1.85 d,p¼0.003),higher number of positive pelvic lymph nodes(PLNs)(1 vs.0,p¼0.003),and more PLN-positive cases(16.0%vs.3.6%,p¼0.003)than the patients in non-ICG group.However,no significant differences were noted in blood transfusion requirement,operative time,hemoglobin level decreases,number of PLNs harvested,or the presence of lymphocysts between the two groups.Conclusion:Our study showed that ICG-enhanced NIR fluorescence-guided operation may improve the accuracy and safety of LPND.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
基金the National Research Foundation sponsored by the Ministry of Science,ICT and Future Planning(NRF-2016R1A2B4012095)the Ministry of Education(NRF-2016R1D1A1A09917195),Republic of Korea.
文摘Traditional moxibustion therapy can stimulate heat and blood-vessel expansion and advance blood circulation.In the present study,a novel noncontact-type thermal therapeutic system was developed using a near-infrared laser diode.The device allows direct interaction of infrared laser light with the skin,thereby facilitating a controlled temperature distribution on the skin and the deep tissues below the skin.While using a tissue-mimicking phantom as a substitute for real skin,the most important optical and thermal parameters are the absorption/attenuation coefficient,thermal conductivity,and specic heat.We found that these parameters can be manipulated by varying the agar-gel concentration.Hence,a multilayer tissue-mimicking phantom was fabricated using different agar-gel concentrations.Thermal imaging and thermocouples were used to measure the temperature distribution inside the phantom during laser irradiation.The temperature increased with the increase in the agar-gel concentration and reached a maximum value under the tissue phantom surface.To induce a similar thermal effect of moxibustion therapy,controlled laser-irradiation parameters such as output power,wavelength and pulse width were obtained from further analysis of the temperature distribution.From the known optothermal properties of the patient's skin,the temperature distribution inside the tissue was manipulated by optimizing the laser parameters.This study can contribute to patient-specic thermal therapy in clinics.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375040 and 11974071)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金supported by the National Key Research and Development Program of China(Nos.2019YFE03090100 and 2022YFE03100002)National Natural Science Foundation of China(No.12075241)。
文摘The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金supported by the National Natural Science Foundation of China(U22A2075,U20A20209)the Fundamental Research Funds for the Central Universities(226-2022-00200)the Qianjiang Distinguished Experts program of Hangzhou.
文摘Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.
基金supported by the National Key R&D Program of China,No.2020YFC2004202(to DX).
文摘After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
文摘Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.
基金We are grateful for financial supports from the National Natural Science Foundation of China(Nos.52173177,21971185,22105139)Fundação Universidade de Ciência e Tecnologia de Macao(No.0006/2021/AKP)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20221362)the Science and Technology Support Program of Jiangsu Province(No.TJ-2022-002).This project is also funded by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices,and Soochow University Tang Scholar.
文摘Organic lasers that emit light in the deep-red and near-infrared(NIR)region are of essential importance in laser communication,night vision,bioimaging,and information-secured displays but are still challenging because of the lack of proper gain materials.Herein,a new molecular design strategy that operates by merging two excited-state intramolecular proton transfer-active molecules into one excited-state double proton transfer(ESDPT)-active molecule was demonstrated.Based on this new strategy,three new materials were designed and synthesized with two groups of intramolecular resonance-assisted hydrogen bonds,in which the ESDPT process was proven to proceed smoothly based on theoretical calculations and experimental results of steady-state and transient spectra.Benefiting from the effective six-level system constructed by the ESDPT process,all newly designed materials showed low threshold laser emissions at approximately 720 nm when doped in PS microspheres,which in turn proved the existence of the second proton transfer process.More importantly,our well-developed NIR organic lasers showed high laser stability,which can maintain high laser intensity after 12000 pulse lasing,which is essential in practical applications.This work provides a simple and effective method for the development of NIR organic gain materials and demonstrates the ESDPT mechanism for NIR lasing.
基金Supported by the Shandong Province Key R&D Program Project(No.2021LZGC029)the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY010813)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA24030105)the Qingdao Key Technology and Industrialization Demonstration Project(No.22-3-3-hygg-2-hy)the Earmarked Fund for China Agriculture Research System(No.CARS-49)。
文摘Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.21790392).
文摘Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.
基金supported by the National Science Foundation of China under Award Nos.12074353 and 12075227.
文摘The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金Project supported by National Natural Science Foundation of China(Grant Nos.11575102,11105085,11405098,and 11375108)the Fundamental Research Funds of Shandong University,China(Grant No.2015JC007)
文摘We report on the successful fabrication of highly branched Cu S nanocrystals by laser-induced photochemical reaction.Surprisingly, the single-crystalline nature with preferential alignment of the(107) orientation can be well improved during the moderate growth process. The branch length drastically increases from about 5 nm to 6 μm with an increase of photochemical reaction time(0-40 min). The absorption spectra of as-prepared Cu S nanodendrites show that localized surface plasmon resonance(LSPR) peaks can be modulated from about 1037 nm to 1700 nm with an increase of branch length. Our results have a promising potential for photodynamic therapy and biological imaging application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金The Health Science and Technology Foundation of Inner Mongolia,No.202201436Science and Technology Innovation Foundation of Inner Mongolia,No.CXYD2022BT01.
文摘BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(RS-2023-00251283,and 2022M3D1A2083618)by the Ministry of Education(2020R1A6A1A03040516).
文摘Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.
基金supported by the Medical and Health Research Project of Zhejiang Province(2018RC008,2018KY113,and WKJ-ZJ-2125)Zhejiang Provincial Natural Science Foundation(LQ20H040011).
文摘Objective:Laparoscopic pelvic lymph node dissection(LPND),which is an effective therapy for endometrial cancer,is challenging because of the complexity of the procedure and the occurrence of postoperative complications.This study aimed to explore whether indocyanine green(ICG)-enhanced nearinfrared(NIR)fluorescence-guided LPND is superior to LPND in the context of early-stage endometrial carcinoma.Methods:In this retrospective study,we included the medical records of 190 patients with early-stage endometrioid adenocarcinoma who underwent LPND at the Department of Obstetrics and Gynecology,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine between January 2019 and January 2021.Depending on whether ICG-enhanced NIR fluorescence guidance was used,the patients were assigned to the ICG group or non-ICG group.Patients were followed-up for one year after surgery.Data on demographic characteristics,pathological results,operative outcomes,and complications were collected and analyzed.Results:The baseline characteristics were comparable between the ICG group and non-ICG group,including age,BMI,pregnancy history,and preoperative hemoglobin.For surgical outcomes,the patients in ICG group had significantly lower intraoperative blood loss(50 mL vs.120 mL,p<0.001),less postoperative pelvic drainage time(4.14±1.44 d vs.5.70±1.89 d,p¼0.001),shorter duration of hospital stay(5.26±1.41 d vs.7.37±1.85 d,p¼0.003),higher number of positive pelvic lymph nodes(PLNs)(1 vs.0,p¼0.003),and more PLN-positive cases(16.0%vs.3.6%,p¼0.003)than the patients in non-ICG group.However,no significant differences were noted in blood transfusion requirement,operative time,hemoglobin level decreases,number of PLNs harvested,or the presence of lymphocysts between the two groups.Conclusion:Our study showed that ICG-enhanced NIR fluorescence-guided operation may improve the accuracy and safety of LPND.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.