期刊文献+
共找到88,479篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-watt near-infrared light therapy as a neuroregenerative treatment for traumatic brain injury 被引量:1
1
作者 Theodore A.Henderson 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期563-565,共3页
Infrared light represents a broad spectrum of light with wavelengths from 700 nm to 1 million nm(1,000 microns).At its shortest wavelengths(referred to as near-infrared),it merges with the red spectrum of visible ... Infrared light represents a broad spectrum of light with wavelengths from 700 nm to 1 million nm(1,000 microns).At its shortest wavelengths(referred to as near-infrared),it merges with the red spectrum of visible light.At the longest end(referred to as far-infrared),it blends into the range of microwaves. 展开更多
关键词 TBI Multi-watt near-infrared light therapy as a neuroregenerative treatment for traumatic brain injury NIR
下载PDF
Low intensity near-infrared light promotes bone regeneration via circadian clock protein cryptochrome 1 被引量:3
2
作者 Jinfeng Peng Jiajia Zhao +11 位作者 Qingming Tang Jinyu Wang Wencheng Song Xiaofeng Lu Xiaofei Huang Guangjin Chen Wenhao Zheng Luoying Zhang Yunyun Han Chunze Yan Qian Wan Lili Chen 《International Journal of Oral Science》 SCIE CAS CSCD 2022年第4期584-594,共11页
Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However,... Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells(BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1(CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein(BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects. 展开更多
关键词 STIMULATION INTENSITY light
下载PDF
Highly efficient visible/near-infrared light photocatalytic degradation of antibiotic wastewater over 3D yolk-shell ZnFe_(2)O_(4)supported 0D carbon dots with up-conversion property 被引量:1
3
作者 Weilong Shi Jie Gao +3 位作者 Haoran Sun Zhongyi Liu Feng Guo Lijing Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期213-223,共11页
The development of effective visible and near-infrared photocatalysts is highly promising in the current field of photocatalysis.Herein,carbon dots/ZnFe_(2)O_(4)(CDs/ZFO)with coating zero dimensional(0D)CDs on the sur... The development of effective visible and near-infrared photocatalysts is highly promising in the current field of photocatalysis.Herein,carbon dots/ZnFe_(2)O_(4)(CDs/ZFO)with coating zero dimensional(0D)CDs on the surface of three dimensional(3D)yolk-shell ZFO spheres was designed and synthesized via a selftemplated solvothermal method.The as-prepared CDs/ZFO composites displayed outstanding visible and near-infrared photocatalytic degradation activity of tetracycline(TC),and the optimal 3%CDs/ZFO sample with loading 3%(mass)CDs displayed the highest photocatalytic TC degradation ability under visible light(79.5%within 120 min)and near-infrared light(41%within 120 min).The enhancement of photocatalytic activity for CDs/ZFO composite is mainly ascribed to the fact that 0D/3D yolk-shell CDs/ZFO structure not only effectively reflect the incident light to increase the utilization efficiency of solar light,but also utilize the up-conversion photoluminescence and electronic conductivity properties of CDs to broaden sunlight absorption range and promote separation and transfer of electron-hole pairs. 展开更多
关键词 Carbon dots ZnFe_(2)O_(4) York-shell near-infrared Photocatalytic
下载PDF
NONINVASIVE PROBING OF THE NEUROVASCULAR SYSTEM IN HUMAN BONE/BONE MARROW USING NEAR-INFRARED LIGHT
4
作者 TIZIANO BINZONI DIMITRI VAN DE VILLE 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2011年第2期183-189,共7页
Understanding the mechanisms of interaction between bone/bone marrow,circulatory system and nervous system is of great interest due to the potential clinical impact.In humans,the amount of knowledge in this domain rem... Understanding the mechanisms of interaction between bone/bone marrow,circulatory system and nervous system is of great interest due to the potential clinical impact.In humans,the amount of knowledge in this domain remains relatively limited due to the extreme difficulty to monitor these tissues continuously,noninvasively and for long or repeated periods of time.A typical difficult task would be,for example,to continuously monitor bone/bone marrow blood perfusion,hemoglobin oxygen saturation or blood volume and study their dependence on the activity of the autonomic nervous system.In this review article,we want to show that nearinfrared light might be utilized to solve these problems in part.We hope that the present analysis will stimulate future studies in this domain,for which near-infrared light appears as the best available technology today. 展开更多
关键词 REVIEW laser-Dopplerflowmetry near-infrared spectroscopy PHOTOPLETHYSMOGRAPHY
下载PDF
Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light 被引量:1
5
作者 Qi Zhang Ya Zhang +5 位作者 Hu Shi Hongxia Zhang Jianghong Zhao Zhanfeng Zheng Hengquan Yang Pengju Yang 《Aggregate》 EI CAS 2024年第1期385-397,共13页
Developing new photosystems that integrate broad-band near-infrared(NIR)light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community.In this work,we develop a novel photochemi... Developing new photosystems that integrate broad-band near-infrared(NIR)light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community.In this work,we develop a novel photochemical strategy to prepare light-active carbon dots(CDs)under room temperature and discover that the aggregation of CDs can broaden the light absorption to the NIR region due to the electronic couplings between neighboring CDs.Importantly,the dynamic noncovalent interactions within CD aggregates can stabilize symmetry breaking and thus induce large dipole moments for charge separation and transfer.Furthermore,the weak non-covalent interactions allow for flexible design of the aggregated degrees and the local electronic structures of CD aggregates,further strengthening NIR-light harvesting and charge separation efficiency.As a result,the CD aggregates achieve a record apparent quantum yield of 13.5%at 800 nm,which is one of the best-reported values for NIR-light-driven hydrogen photosynthesis to date.Moreover,we have prepared a series of different CDs and also observed that these CDs after aggregation all exhibit outstanding NIR-responsive photocatalytic hydrogen production activity,suggesting the universality of aggregation-enhanced photocatalysis.This discovery opens a new promising platform for using CD aggregates as efficient light absorbers for solar conversion. 展开更多
关键词 AGGREGATION charge separation hydrogen production near-infrared light PHOTOCATALYSIS
原文传递
Fabrication of Ag@Cu2O core-shell metal-semiconductor nanoparticles and high efficiency photocatalysis under visible- near-infrared light irradiation
6
作者 Lele Wang Ailing Yang +1 位作者 Xichang Bao Renqiang Yang 《纳米科技》 2015年第5期43-50,共8页
下载PDF
pH- and near-infrared light-responsive,biomimetic hydrogels from aqueous dispersions of carbon nanotubes
7
作者 Lulin Hu Xinxin Yu +1 位作者 Jingcheng Hao Lu Xu 《Nano Research》 SCIE EI CSCD 2024年第4期3120-3129,共10页
Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies... Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules,although few exceptions have been acquired using two-dimensional(2D)inorganic nanosheets.Herein,with a systematic study on the gelation behavior of carbon-based 0D quantum dots,1D nanotubes,and 3D fullerenes,we find that acidified 1D carbon nanotubes(CNTs)can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials.The as-prepared CNT gels exhibit not only a pH-or photothermal-triggered mechanical and tribological adaptivity,which allows them to simulate the behavior of sea cucumbers,peacock mantis shrimps,and mammalian muscles or cortical bones,but also a unique damping property that is similar to spider’s cuticular pad.Their high elasticity,effective lubrication,excellent biocompatibility,and controllable friction and wear also allow them to function as a new type of smart lubricants,whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared(NIR)light irradiations,free of any toxic and flammable base oils or additives. 展开更多
关键词 biomimetic hydrogels carbon nanotubes(CNTs) mechanical and tribological adaptivity pH-and near-infrared(NIR)light responsiveness switchable lubrication
原文传递
Translucent ceramic enabling next-generation lasing-driven near-infrared light source
8
作者 Hongjie Zhang 《Science China Materials》 SCIE EI CAS CSCD 2024年第4期1359-1360,共2页
Broadband near-infrared(NIR) light sources demonstrate great potential in quantitative food analysis, material identification,invasive brain imaging diagnosis, and real-time health monitoring fields, etc. [1–3]. Comp... Broadband near-infrared(NIR) light sources demonstrate great potential in quantitative food analysis, material identification,invasive brain imaging diagnosis, and real-time health monitoring fields, etc. [1–3]. Compared with competing technologies based on quantum dots and organic crystals, NIR-emitting phosphor converted light-emitting diodes(pc-LEDs) favor high spectral modulation and physicochemical stability [4]. 展开更多
关键词 light CERAMIC LASING
原文传递
980 nm Near-Infrared Light-Emitting Diode Using All-Inorganic Perovskite Nanocrystals Doped with Ytterbium Ions
9
作者 Zhenglan Ye Taoran Liu +8 位作者 Dan Chen Yazhou Yang Jiayi Li Yaqing Pang Xiangquan Liu Yuhua Zuo Jun Zheng Zhi Liu Buwen Cheng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期207-215,共9页
All-inorganic perovskite(CsPbX3)nanocrystals(NCs)have recently been widely investigated as versatile solution-processable light-emitting materials.Due to its wide-bandgap nature,the all-inorganic perovskite NC Light-E... All-inorganic perovskite(CsPbX3)nanocrystals(NCs)have recently been widely investigated as versatile solution-processable light-emitting materials.Due to its wide-bandgap nature,the all-inorganic perovskite NC Light-Emitting Diode(LED)is limited to the visible region(400-700 nm).A particularly difficult challenge lies in the practical application of perovskite NCs in the infrared-spectrum region.In this work,a 980 nm NIR all-inorganic perovskite NC LED is demonstrated,which is based on an efficient energy transfer from wide-bandgap materials(CsPbCl3 NCs)to ytterbium ions(Yb3+)as an NIR emitter doped in perovskite NCs.The optimized CsPbCl3 NC with 15 mol%Yb3+doping concentration has the strongest 980 nm photoluminescence(PL)peak,with a PL quantum yield of 63%.An inverted perovskite NC LED is fabricated with the structure of ITO/PEDOT:PSS/poly-TPD/CsPbCl3:15 mol%Yb3+NCs/TPBi/LiF/Al.The LED has an External Quantum Efficiency(EQE)of 0.2%,a Full Width at Half Maximum(FWHM)of 47 nm,and a maximum luminescence of 182 cd/m?.The introduction of Yb3+doping in perovskite NCs makes it possible to expand its working wavelength to near-infrared band for next-generation light sources and shows potential applications for optoelectronic integration. 展开更多
关键词 perovskite nanocrystals rare-earth doping light-Emitting Diode(LED) near-infrared optical interconnection
原文传递
Functional near-infrared spectroscopy in non-invasive neuromodulation 被引量:1
10
作者 Congcong Huo Gongcheng Xu +6 位作者 Hui Xie Tiandi Chen Guangjian Shao Jue Wang Wenhao Li Daifa Wang Zengyong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1517-1522,共6页
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson... Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases. 展开更多
关键词 brain-computer interface cerebral neural networks functional near-infrared spectroscopy neural circuit NEUROFEEDBACK neurological diseases NEUROMODULATION non-invasive brain stimulation transcranial electrical stimulation transcranial electrical stimulation
下载PDF
Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods:A compendium review
11
作者 Giles Blaney Angelo Sassaroli Sergio Fantini 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第4期1-115,共115页
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo... This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps. 展开更多
关键词 Diffuse optics diffusion theory Monte Carlo spatial sensitivity absorption perturbations near-infrared spectroscopy CONTINUOUS-WAVE FREQUENCY-DOMAIN time-domain
下载PDF
Cortical activity in patients with high-functioning ischemic stroke during the Purdue Pegboard Test:insights into bimanual coordinated fine motor skills with functional near-infrared spectroscopy
12
作者 Siyun Chen Mengchai Mao +4 位作者 Guangyue Zhu Yufeng Chen Yuqi Qiu Bin Ye Dongsheng Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1098-1104,共7页
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi... After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation. 展开更多
关键词 bilateral arm training bimanual coordination cortical activity fine motor dexterity functional near-infrared spectroscopy(fNIRS) high-functioning Purdue Pegboard Test stroke
下载PDF
Near-infrared light-driven multifunctional metal ion(Cu^(2+))-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia
13
作者 Liang Gui Juju Huang +7 位作者 Yi Xing Yongjun Li Junjie Zou Yingwei Zhu Xiao Liang Xiwei Zhang Qiang Xu Xin Du 《Nano Research》 SCIE EI CSCD 2023年第4期5108-5120,共13页
Most of the current nanomedicine-based treatments for critical limb ischemia(CLI)only aim at promoting angiogenesis,ignoring the negative influence on the therapeutic effects caused by the complex pathological micro-e... Most of the current nanomedicine-based treatments for critical limb ischemia(CLI)only aim at promoting angiogenesis,ignoring the negative influence on the therapeutic effects caused by the complex pathological micro-environment of ischemic tissue.Herein,near-infrared(NIR)light-driven metal ion(Cu^(2+))-loaded polydopamine(PDA)nanomotors(JMPN@Cu^(2+))is designed and prepared.Due to the good antioxidant and anti-inflammatory activities of PDA,JMPN@Cu^(2+)exhibits excellent biocompatibility and significantly improves the ischemic micro-environment.Additionally,based on superior photothermal conversion effect and jellyfish-like structure,the nanomotors are quickly propelled under NIR laser with low energy intensity to acquire the ability of movement and facilitate intracellular uptake of JMPN@Cu^(2+)by endothelial cells,resulting in the enhanced pro-angiogenic effect of Cu^(2+).Moreover,in vivo experimental findings show that JMPN@Cu^(2+)combined with NIR irradiation can successfully accelerate blood flow recovery and improve muscle repair.Taking these results together,this kind of nanomotor can promote angiogenesis along with ischemic micro-environment amelioration,holding great potential applications for the treatment of limb ischemia. 展开更多
关键词 NANOMOTORS POLYDOPAMINE near-infrared(NIR)light copper therapeutic angiogenesis
原文传递
Near-infrared cholangiography with intragallbladder indocyanine green injection in minimally invasive cholecystectomy
14
作者 Savvas Symeonidis Ioannis Mantzoros +9 位作者 Elissavet Anestiadou Orestis Ioannidis Panagiotis Christidis Stefanos Bitsianis Vasiliki Bisbinas Konstantinos Zapsalis Trigona Karastergiou Dimitra Athanasiou Stylianos Apostolidis Stamatios Angelopoulos 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第4期1017-1029,共13页
Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct in... Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries. 展开更多
关键词 Minimally invasive cholecystectomy Laparoscopic cholecystectomy Biliary tract mapping Indocyanine green near-infrared fluorescent cholangiography Intracystic indocyanine green Intragallbladder indocyanine green Bile duct injury
下载PDF
Photoprotective Ability of Sunscreens against Ultraviolet, Visible Light and Near-Infrared Radiation
15
作者 Yohei Tanaka 《Optics and Photonics Journal》 2023年第6期140-146,共7页
Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, p... Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage. 展开更多
关键词 Anti-Photoageing PHOTOPROTECTION SUNSCREEN ULTRAVIOLET Visible light near-infrared
下载PDF
Novel Low Viscosity Zinc Oxide, Iron Oxides and Erioglaucine Sunscreen Potential to Protect from Ultraviolet, Visible Light and Near-Infrared Radiation
16
作者 Yohei Tanaka Richard Parker +1 位作者 Amaryllis Aganahi Ailen Pedroso 《Optics and Photonics Journal》 2023年第9期217-226,共10页
Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously repor... Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage. 展开更多
关键词 Anti-Photoageing Photoimmunosuppression PHOTOPROTECTION SUNSCREEN ULTRAVIOLET Visible light near-infrared
下载PDF
Photoprotective Ability of Colored Iron Oxides in Tinted Sunscreens against Ultraviolet, Visible Light and Near-Infrared Radiation
17
作者 Yohei Tanaka Richard Parker Amaryllis Aganahi 《Optics and Photonics Journal》 2023年第8期199-208,共10页
Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also... Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection. 展开更多
关键词 Anti-Photoageing Photoimmunosuppression PHOTOPROTECTION SUNSCREEN ULTRAVIOLET Visible light near-infrared
下载PDF
Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors 被引量:5
18
作者 Xinli Liu Yongchun Pan +5 位作者 Jingjing Yang Yanfeng Gao Ting Huang Xiaowei Luan Yuzhen Wang Yujun Song 《Nano Research》 SCIE EI CAS CSCD 2020年第3期653-660,共8页
We report gold nanoparticles(AuNPs)doped iron-based metal-organic frameworks(GIM)which displays near-infrared light(NIR)-enhanced cascade nanozyme against hypoxic tumors.Due to the strong protein adsorption-induced su... We report gold nanoparticles(AuNPs)doped iron-based metal-organic frameworks(GIM)which displays near-infrared light(NIR)-enhanced cascade nanozyme against hypoxic tumors.Due to the strong protein adsorption-induced surface passivation,AuNPs suffer from the loss of glucose oxidase(GOx)activity.However,GIM could protect the GOx-like activity of AuNPs with the satisfactory shield capability.In addition,GIM exhibited excellent photothermal conversion ability and unique NIR light-enhanced GOx-like activity,which could efficiently increase the endogenous H2O2 production.Meanwhile,as the produced H2O2 is converted by GIM into O2 and highly toxic OH.Thus,GIM-catalyzed cascade reactions with NIR light irradiation not only offer the O2 but also promote the reactive oxygen species(ROS)generation at tumor sites.The produced O2 could be further applied to AuNPs catalytic oxidation of glucose and relieve hypoxic condition of tumor microenvironment(TME).As a proof-of-concept study,GIM demonstrates the admirable tumor ablation under NIR irradiation in vivo. 展开更多
关键词 nanozyme metal-organic frameworks gold nanoparticles near-infrared light reactive oxygen species
原文传递
High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared region
19
作者 高雨航 田宇 +6 位作者 杜庆国 王原丽 付琴 卞强 李政颖 冯帅 任芳芳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期368-374,共7页
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly... Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm. 展开更多
关键词 asymmetric polarization converter visible and near-infrared light chiral metasurface Fabry-Perot like resonance
下载PDF
Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65 % for highly efficient disinfection under near-infrared light 被引量:2
20
作者 Jie Song Jun Li +8 位作者 Xiangren Bai Liang Kang Liying Ma Naiqin Zhao Shuilin Wu Yuan Xue Jiajun Li Xiaojian Ji Junwei Sha 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期83-94,共12页
Low photothermal conversion efficiency restricts the antibacterial application of photothermal materials.In this work,two-dimensional carbon nanosheets(2D C)were prepared and decorated with Cu nanoparticles(2D C/Cu)by... Low photothermal conversion efficiency restricts the antibacterial application of photothermal materials.In this work,two-dimensional carbon nanosheets(2D C)were prepared and decorated with Cu nanoparticles(2D C/Cu)by using a simple soluble salt template method combined with ultrasonic exfoliation.The photothermal conversion efficiency of 2 D C/Cu system can be optimized by changing the content of Cu nanoparticles,where the 2D C/Cu2 showed the best photothermal conversion efficiency(á)of 65.05%under 808 nm near-infrared light irradiation.In addition,the photothermal performance can affect the release behavior of Cu ions.This superior photothermal property combined with released Cu ions can endow this 2D hybrid material with highly efficient antibacterial efficacy of 99.97%±0.01%,99.96%±0.01%,99.97%±0.01%against Escherichia coli,Staphylococcus aureus,and methicillin-resistant Staphylococcus aureus,respectively,because of the synergetic effect of photothermy and ion release.In addition,this 2D hybrid system exhibited good cytocompatibility.Hence,this study provides a novel strategy to enhance the photothermal performance of 2D materials and thus will be beneficial for development of antibiotics-free antibacterial materials with safe and highly efficient bactericidal activity. 展开更多
关键词 Photothermal conversion Antibacterial Two-dimensional carbon nanosheet Cu nanoparticle near-infrared light
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部