The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays a...The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.展开更多
Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasom...Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasome and is promoted by Auxin.Auxin binds directly to a SCF-type ubiquitin-protein ligase,TIR1,facilitates the interaction between Aux/IAA proteins and TIR1,and then the degradation of Aux/IAA proteins.A few studies have reported that some ARFs are also unstable proteins,and their degradation is also mediated by 26S proteasome.In this study,by using of antibodies recognizing endogenous ARF7 proteins,we found that protein stability of ARF7 was affected by light.By expressing MYC tagged ARF activators in protoplasts,we found that degradation of ARF7 was inhibited by 26 proteasome inhibitors.In addition,at least ARF5 and ARF19 were also unstable proteins,and degradation of ARF5 via 26S proteasome was further confirmed by using stable transformed plants overexpressing ARF5 with a GUS tag.展开更多
Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, p...Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.展开更多
Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously repor...Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.展开更多
Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also...Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.展开更多
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the...The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.展开更多
[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theo...[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theoretical basis for improving the pruning techniques of Korla fragrant pear trees. [Method] The light response curve and CO2 response curve of the trees trained to three systems were measured by LI-6400 portable photosynthesis system. The SPAD value was measured using SPAD-502 chlorophyll meter, and specific leaf weight was calculated, to evaluate the effects of the three training systems. [Result] The CO2 response curves of the three training systems were basically in agreement with their light response curves, but there were some differences in their characteristic parameters. Among the three training systems, the maximum net photosynthetic rate, apparent quantum yield and light compensation point of espalier trained trees were the highest, while their light saturation point was the lowest. The CO2 saturation point of delayed-open central leader trained trees and open center trained trees were 1 752 and 1 665 μmol/mol, both of which were much higher than that of espalier trained trees. In addition, the carboxylation efficiency and photorespiration rate of espalier trained trees were both higher than those of delayed-open central leader trained trees and open center trained trees, while the CO2 compensation point of espalier trained trees was the lowest. The leaf SPAD value of espalier trained trees was the largest, followed by that of open center trained trees, and the leaf SPAD value of delayed-open central leader trained trees was the smallest. In addition, the leaf area and specific leaf weight of espalier trained trees were both the highest, followed by those of open center trained trees. [Conclusion] Among the training systems for Korla fragrant pear trees, the espalier training system had better ability to capture light, higher photosynthetic productivity and strongest adaptability to light environment, and open center training system takes the second place. On the contrary, delayed-open central leader training system has the weakest adaptability to light environment, but it can adapt to a higher CO2 concentration. In summary, for the training of Korla fragrant pear trees, espalier training system, which has the highest theoretical yield, is the best among the three training systems, and delayed-open central leader training system is the worst.展开更多
BiOClxBr1-x catalysts were synthesized through an alcoholysis method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM)...BiOClxBr1-x catalysts were synthesized through an alcoholysis method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and diffuse reflectance spectroscopy (DRS). The as-prepared photocatalysts were found to be tetragonal crystal structure and lamellar plate morphology. Their band gaps were between 3.44 and 2.83 eV. The effect of light response on the photocatalytic activity of BiOClxBrl-x was investigated by degradation of Rhodamine B (RhB). Complete removal of RhB from water was realized under simulated sunlight irradiation for 50 min with BiOC10.5Br0.5. Mechanism studies showed that photo- generated holes and superoxide anion radicals played important roles in RhB photodegradation. The results of chemical oxygen demand (COD) confirmed RhB mineralization. The effect of light response on the activity of BiOClxBr1-x was further investigated under monochromatic light irradiation, and BiOCl0.5Br0.5 catalyst exhibited the highest activity. Furthermore, BiOC10.5Br0.5 exhibited high stability, suggesting its practical application for the removal of RhB pollutant from water.展开更多
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It ...This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It summarizes the strategies of how to synthesize high efficiency PbX QDs and how to realize high performance Pb X based NIR-QLEDs.展开更多
Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies...Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules,although few exceptions have been acquired using two-dimensional(2D)inorganic nanosheets.Herein,with a systematic study on the gelation behavior of carbon-based 0D quantum dots,1D nanotubes,and 3D fullerenes,we find that acidified 1D carbon nanotubes(CNTs)can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials.The as-prepared CNT gels exhibit not only a pH-or photothermal-triggered mechanical and tribological adaptivity,which allows them to simulate the behavior of sea cucumbers,peacock mantis shrimps,and mammalian muscles or cortical bones,but also a unique damping property that is similar to spider’s cuticular pad.Their high elasticity,effective lubrication,excellent biocompatibility,and controllable friction and wear also allow them to function as a new type of smart lubricants,whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared(NIR)light irradiations,free of any toxic and flammable base oils or additives.展开更多
Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with a...Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with an ethanol solution of zinc powder and TiOF_2. It is worth noting that the 3D TiO_2 hollow nanoboxes are assembled from six single-crystal nanosheets and have dominant exposure of the {001} facets. It is found from EPR spectra that adding zinc powder is an environment-friendly and effective strategy to introduce Ti^(3+) and oxygen vacancy(Ov) into the bulk of 3D hollow nanoboxes rather than the surface, which is responsible for their enhanced visible photocatalytic properties.The photocatalytic activity was evaluated by measuring the formation rate of hydroxide free radicals using 7-hydroxycoumarin as a probe. The sample prepared with zinc/TiOF_2 mass ratio of0.25 exhibited the highest RhB photodegradation activity under visible-light irradiation with a degradation rate of 96%, which is 4.0-times higher than that of pure TiO_2. The results suggest a novel approach to construct in-situ 3D hierarchical TiO_2 hollow nanoboxes doped with Ti^(3+) and Ov without introducing any impurity elements for superior visible-light photocatalytic activity.展开更多
Infrared light represents a broad spectrum of light with wavelengths from 700 nm to 1 million nm(1,000 microns).At its shortest wavelengths(referred to as near-infrared),it merges with the red spectrum of visible ...Infrared light represents a broad spectrum of light with wavelengths from 700 nm to 1 million nm(1,000 microns).At its shortest wavelengths(referred to as near-infrared),it merges with the red spectrum of visible light.At the longest end(referred to as far-infrared),it blends into the range of microwaves.展开更多
Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditiona...Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.展开更多
Euglena gracilis is a unicellular green eukaryotic microalga that features characteristics of both plants and animals.The photosynthetic function of its chloroplast is easily lost under stress resulting in bleached mu...Euglena gracilis is a unicellular green eukaryotic microalga that features characteristics of both plants and animals.The photosynthetic function of its chloroplast is easily lost under stress resulting in bleached mutants,while the physiological role of their residual plastid DNAs remains unclear.In this study,we obtained five bleached mutants by ofloxacin(Ofl)treatment,identified 12 residual plastid genes in five bleached mutants,and determined the mRNA levels in the wild type E.gracilis(WT)and one bleached mutant(OflB2)under dark and light stimulation conditions by quantitative reverse transcribed PCR(qRTPCR).Results show that the expression of all selected plastid genes in both WT and OflB2 mutant did not change significantly in darkness,while their responses to light stimulation were different.Under the light stimulation conditions,half of the genes did not change significantly,while most of the other genes were down-regulated in OflB2 mutant and up-regulated in WT.Therefore,the bleached mutant retains part of the plastid genome and the plastid relic is responsive to light.Our research will help to understand the functions of residual plastid DNA and evolution of chloroplasts.展开更多
The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plo...The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.展开更多
Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared expos...Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared exposure, but few have extensively investigated the innate biological defenses within human tissues against visible light and near-infrared exposure. Herein, we investigated spectral properties of endogenous human biological defenses against ultra-violet to near-infrared. Methods: A double-beam spectrophotometer (190 - 2700 nm) was used to measure the transmission spectra of a saline solution used to imitate perspiration, and oil to imitate sebum, as well as human skin, blood, adipose tissue, and muscle. Results: Saline (thickness, 0.5 mm) blocked 27.5% - 98.6% of ultra-violet, 13.2% - 34.3% of visible light, and 10.7% - 99.8% of near-infrared. Oil (thickness, 0.5 mm) blocked 50.5% - 100% of ultra-violet, 28.7% - 54.8% of visible light, and 19.0% - 98.3% of near-infrared. Blood thicknesses of 0.05 and 0.5 mm blocked over 97.8%, 100% of ultra-violet, over 94.6%, 99.7% of visible light, and over 75.8%, 99.4% of near-infrared, respectively. Skin thicknesses of 0.25 and 0.5 mm blocked over 99.4%, 100% of ultra-violet and over 94.3%, 99.7% of visible light, and over 74.7%, 93.5% of near-infrared, respectively. Adipose tissue thickness of 0.25 and0.5 mm blocked over 98.3%, 100% of ultra-violet, over 94.7%, 99.7% of visible light, and over 88.1%, 98.6% of near-infrared, respectively. Muscle thickness of 0.25 and0.5 mm blocked over 95.4%, 99.8% of ultra-violet, over 93.1%, 99.5% of visible light, and over 86.9%, 98.3% of near-infrared, respectively. Conclusions: Humans possess endogenous biological protection against ultra-violet, visible light and near-infrared exposure on multiple levels, including through perspiration, sebum, blood, skin, adipose tissue, and muscle. Since solar and artificial radiation affects human tissues, biological defenses made of biological materials may be induced to protect subcutaneous tissues against these wavelengths.展开更多
The response of steady-state fluorescence (Fs) to irradiance in apple (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd.) leaf increased and decreased at light levels below and above 400 mumol(.)m(-2.)s(-1) ph...The response of steady-state fluorescence (Fs) to irradiance in apple (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd.) leaf increased and decreased at light levels below and above 400 mumol(.)m(-2.)s(-1) photosynthetic photon flux density (PPFD), respectively, while the light-adapted maximal fluorescence (Fm') and minimal fluorescence (Fo') decreased constantly with the increasing PPFD, and the closure of photosystem 11 reaction center (PS 11 RC) increased continuously, reflected by the chlorophyll fluorescence parameter of (Fs-Fo')/(Fm'-Fo'). These facts indicated that decrease of Fs above 400 mumol(.)m(-2.)s(-1) PPFD was not caused by closure of PS 11 RC, but was mainly resulted from the process of light transfer from light-harvesting complex II (LHC II) to PS II RC. In the presence of N- ethylmaleimide (NEM), an inhibitor of photosynthetic state transition, Fs kept on increasing in apple leaf at light levels from 400 to 700 mumol(.)m(-1.)s(-1), which was the photosynthetic saturation irradiance of apple leaves. In addition, Fs still increased at light levels over 700 mumol(.)m(-2.)s(-1) in apple leaf pre-treated with dithiothreitol (DTT), an inhibitor of xanthophyll cycle. These changes showed that state transition and xanthophyll cycle caused a decrease of Fs in apple leaf at light levels below and above the photosynthetic saturation irradiance, respectively. When apple leaf was pre-treated with NEM, the PS II apparent rate of photochemical reaction (P-rate) and photochemical quenching (qP) decreased significantly in the light range of 600-800 mumol(.)m(-2.)s(-1), but the non-photochemical quenching (qN) existed a small increase at 600-800 mumol(.)m(-2.)s(-1) and a decrease above 800 mumol(.)m(-2.)s(-1). These phenomena suggested that state transition was mainly a photochemical and a non-photochemical process in apple leaf responding to light lower and higher than photosynthetic saturation irradiance, respectively.展开更多
The molecular mechanism underlying phototherapy and light treatment,which utilize various wavelength spectra of light,including near-infrared(NIR),to cure human and plant diseases,is obscure.Here we re-vealed that NIR...The molecular mechanism underlying phototherapy and light treatment,which utilize various wavelength spectra of light,including near-infrared(NIR),to cure human and plant diseases,is obscure.Here we re-vealed that NIR light confers antiviral immunity by positively regulating PHYTOCHROME-INTERACTING FACTOR 4(PIF4)-activated RNA interference(RNAi)in plants.PIF4,a central transcription factor involved in light signaling,accumulates to high levels under NIR light in plants.PIF4 directly induces the transcription of two essential components of RNAi,RNA-DEPENDENT RNA POLYMERASE 6(RDR6)and ARGONAUTE 1(AGO1),which play important roles in resistance to both DNA and RNA viruses.Moreover,the pathogenic determinant bC1 protein,which is evolutionarily conserved and encoded by betasatellites,interacts with PIF4 and inhibits its positive regulation of RNAi by disrupting PIF4 dimerization.Thesefindings shed light on the molecular mechanism of PIF4-mediated plant defense and provide a new perspective for the explo-ration of NIR antiviral treatment.展开更多
Developing new photosystems that integrate broad-band near-infrared(NIR)light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community.In this work,we develop a novel photochemi...Developing new photosystems that integrate broad-band near-infrared(NIR)light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community.In this work,we develop a novel photochemical strategy to prepare light-active carbon dots(CDs)under room temperature and discover that the aggregation of CDs can broaden the light absorption to the NIR region due to the electronic couplings between neighboring CDs.Importantly,the dynamic noncovalent interactions within CD aggregates can stabilize symmetry breaking and thus induce large dipole moments for charge separation and transfer.Furthermore,the weak non-covalent interactions allow for flexible design of the aggregated degrees and the local electronic structures of CD aggregates,further strengthening NIR-light harvesting and charge separation efficiency.As a result,the CD aggregates achieve a record apparent quantum yield of 13.5%at 800 nm,which is one of the best-reported values for NIR-light-driven hydrogen photosynthesis to date.Moreover,we have prepared a series of different CDs and also observed that these CDs after aggregation all exhibit outstanding NIR-responsive photocatalytic hydrogen production activity,suggesting the universality of aggregation-enhanced photocatalysis.This discovery opens a new promising platform for using CD aggregates as efficient light absorbers for solar conversion.展开更多
基金This work was supported by the National Key Research and Development Program(Nos.2022YFB3503600 and 2021YFA0718500)Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA15360102)National Natural Science Foundation of China(Nos.12273042 and 12075258).
文摘The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.
文摘Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasome and is promoted by Auxin.Auxin binds directly to a SCF-type ubiquitin-protein ligase,TIR1,facilitates the interaction between Aux/IAA proteins and TIR1,and then the degradation of Aux/IAA proteins.A few studies have reported that some ARFs are also unstable proteins,and their degradation is also mediated by 26S proteasome.In this study,by using of antibodies recognizing endogenous ARF7 proteins,we found that protein stability of ARF7 was affected by light.By expressing MYC tagged ARF activators in protoplasts,we found that degradation of ARF7 was inhibited by 26 proteasome inhibitors.In addition,at least ARF5 and ARF19 were also unstable proteins,and degradation of ARF5 via 26S proteasome was further confirmed by using stable transformed plants overexpressing ARF5 with a GUS tag.
文摘Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.
文摘Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.
文摘Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.
文摘The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.
文摘[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theoretical basis for improving the pruning techniques of Korla fragrant pear trees. [Method] The light response curve and CO2 response curve of the trees trained to three systems were measured by LI-6400 portable photosynthesis system. The SPAD value was measured using SPAD-502 chlorophyll meter, and specific leaf weight was calculated, to evaluate the effects of the three training systems. [Result] The CO2 response curves of the three training systems were basically in agreement with their light response curves, but there were some differences in their characteristic parameters. Among the three training systems, the maximum net photosynthetic rate, apparent quantum yield and light compensation point of espalier trained trees were the highest, while their light saturation point was the lowest. The CO2 saturation point of delayed-open central leader trained trees and open center trained trees were 1 752 and 1 665 μmol/mol, both of which were much higher than that of espalier trained trees. In addition, the carboxylation efficiency and photorespiration rate of espalier trained trees were both higher than those of delayed-open central leader trained trees and open center trained trees, while the CO2 compensation point of espalier trained trees was the lowest. The leaf SPAD value of espalier trained trees was the largest, followed by that of open center trained trees, and the leaf SPAD value of delayed-open central leader trained trees was the smallest. In addition, the leaf area and specific leaf weight of espalier trained trees were both the highest, followed by those of open center trained trees. [Conclusion] Among the training systems for Korla fragrant pear trees, the espalier training system had better ability to capture light, higher photosynthetic productivity and strongest adaptability to light environment, and open center training system takes the second place. On the contrary, delayed-open central leader training system has the weakest adaptability to light environment, but it can adapt to a higher CO2 concentration. In summary, for the training of Korla fragrant pear trees, espalier training system, which has the highest theoretical yield, is the best among the three training systems, and delayed-open central leader training system is the worst.
基金the National Natural Science Foundation of China(No.21176168)the International Science and Technology Cooperation Program of Shanxi Province,China(No.2012081017)the Science and Technology Project of Taiyuan(No.20120164016)
文摘BiOClxBr1-x catalysts were synthesized through an alcoholysis method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and diffuse reflectance spectroscopy (DRS). The as-prepared photocatalysts were found to be tetragonal crystal structure and lamellar plate morphology. Their band gaps were between 3.44 and 2.83 eV. The effect of light response on the photocatalytic activity of BiOClxBrl-x was investigated by degradation of Rhodamine B (RhB). Complete removal of RhB from water was realized under simulated sunlight irradiation for 50 min with BiOC10.5Br0.5. Mechanism studies showed that photo- generated holes and superoxide anion radicals played important roles in RhB photodegradation. The results of chemical oxygen demand (COD) confirmed RhB mineralization. The effect of light response on the activity of BiOClxBr1-x was further investigated under monochromatic light irradiation, and BiOCl0.5Br0.5 catalyst exhibited the highest activity. Furthermore, BiOC10.5Br0.5 exhibited high stability, suggesting its practical application for the removal of RhB pollutant from water.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
基金Project supported by the National Key Research and Development Program,China(Grant Nos.2016YFB0401702 and 2017YFE0120400)the National Natural Science Foundation of China(Grant Nos.61875082 and 61405089)+6 种基金the Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.2017KSYS007)the Natural Science Foundation of Guangdong,China(Grant No.2017B030306010)the Guangdong Province’s 2018–2019 Key R&D Program:Environmentally Friendly Quantum Dots Luminescent Materials,China(Grant No.2019B010924001)the Shenzhen Innovation Project,China(Grant Nos.JCYJ20160301113356947 and JSGG20170823160757004)the Shenzhen Peacock Team Project,China(Grant No.KQTD2016030111203005)the Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.ZDSYS201707281632549)the Tianjin New Materials Science and Technology Key Project,China(Grant No.16ZXCLGX00040)
文摘This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It summarizes the strategies of how to synthesize high efficiency PbX QDs and how to realize high performance Pb X based NIR-QLEDs.
基金supported by the Hundred Talents Program of Chinese Academy of Sciences(No.E30247YB)Special Talents Program of Lanzhou Institute of Chemical Physics(No.E0SX0282)+1 种基金the National Natural Science Foundation of Shandong Province(No.ZR2022QB190)the Innovative Research Funds of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing(Nos.E1R06SXM07,E2R06SXM14).
文摘Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules,although few exceptions have been acquired using two-dimensional(2D)inorganic nanosheets.Herein,with a systematic study on the gelation behavior of carbon-based 0D quantum dots,1D nanotubes,and 3D fullerenes,we find that acidified 1D carbon nanotubes(CNTs)can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials.The as-prepared CNT gels exhibit not only a pH-or photothermal-triggered mechanical and tribological adaptivity,which allows them to simulate the behavior of sea cucumbers,peacock mantis shrimps,and mammalian muscles or cortical bones,but also a unique damping property that is similar to spider’s cuticular pad.Their high elasticity,effective lubrication,excellent biocompatibility,and controllable friction and wear also allow them to function as a new type of smart lubricants,whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared(NIR)light irradiations,free of any toxic and flammable base oils or additives.
基金supported by the National Natural Science Foundation of China(20702064,21177161,31402137)Hubei Province Science Fund for Distinguished Yong Scholars(2013CFA034)+2 种基金the Program for Excellent Talents in Hubei Province(RCJH15001)the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education(LYZ1107)the Fundamental Research Funds for the Central University,South-Central University for Nationalities(CZP17077)~~
文摘Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with an ethanol solution of zinc powder and TiOF_2. It is worth noting that the 3D TiO_2 hollow nanoboxes are assembled from six single-crystal nanosheets and have dominant exposure of the {001} facets. It is found from EPR spectra that adding zinc powder is an environment-friendly and effective strategy to introduce Ti^(3+) and oxygen vacancy(Ov) into the bulk of 3D hollow nanoboxes rather than the surface, which is responsible for their enhanced visible photocatalytic properties.The photocatalytic activity was evaluated by measuring the formation rate of hydroxide free radicals using 7-hydroxycoumarin as a probe. The sample prepared with zinc/TiOF_2 mass ratio of0.25 exhibited the highest RhB photodegradation activity under visible-light irradiation with a degradation rate of 96%, which is 4.0-times higher than that of pure TiO_2. The results suggest a novel approach to construct in-situ 3D hierarchical TiO_2 hollow nanoboxes doped with Ti^(3+) and Ov without introducing any impurity elements for superior visible-light photocatalytic activity.
文摘Infrared light represents a broad spectrum of light with wavelengths from 700 nm to 1 million nm(1,000 microns).At its shortest wavelengths(referred to as near-infrared),it merges with the red spectrum of visible light.At the longest end(referred to as far-infrared),it blends into the range of microwaves.
文摘Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.
基金Supported by the National Natural Science Foundation of China(No.31670116)the Guangdong Innovation Research Team Fund(No.2014ZT05S078)the Shenzhen Grant Plan for Science&Technology(Nos.JCYJ20160308095910917,JCYJ20170818100339597,JCYJ 20130329114940668)。
文摘Euglena gracilis is a unicellular green eukaryotic microalga that features characteristics of both plants and animals.The photosynthetic function of its chloroplast is easily lost under stress resulting in bleached mutants,while the physiological role of their residual plastid DNAs remains unclear.In this study,we obtained five bleached mutants by ofloxacin(Ofl)treatment,identified 12 residual plastid genes in five bleached mutants,and determined the mRNA levels in the wild type E.gracilis(WT)and one bleached mutant(OflB2)under dark and light stimulation conditions by quantitative reverse transcribed PCR(qRTPCR).Results show that the expression of all selected plastid genes in both WT and OflB2 mutant did not change significantly in darkness,while their responses to light stimulation were different.Under the light stimulation conditions,half of the genes did not change significantly,while most of the other genes were down-regulated in OflB2 mutant and up-regulated in WT.Therefore,the bleached mutant retains part of the plastid genome and the plastid relic is responsive to light.Our research will help to understand the functions of residual plastid DNA and evolution of chloroplasts.
基金funded by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.
文摘Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared exposure, but few have extensively investigated the innate biological defenses within human tissues against visible light and near-infrared exposure. Herein, we investigated spectral properties of endogenous human biological defenses against ultra-violet to near-infrared. Methods: A double-beam spectrophotometer (190 - 2700 nm) was used to measure the transmission spectra of a saline solution used to imitate perspiration, and oil to imitate sebum, as well as human skin, blood, adipose tissue, and muscle. Results: Saline (thickness, 0.5 mm) blocked 27.5% - 98.6% of ultra-violet, 13.2% - 34.3% of visible light, and 10.7% - 99.8% of near-infrared. Oil (thickness, 0.5 mm) blocked 50.5% - 100% of ultra-violet, 28.7% - 54.8% of visible light, and 19.0% - 98.3% of near-infrared. Blood thicknesses of 0.05 and 0.5 mm blocked over 97.8%, 100% of ultra-violet, over 94.6%, 99.7% of visible light, and over 75.8%, 99.4% of near-infrared, respectively. Skin thicknesses of 0.25 and 0.5 mm blocked over 99.4%, 100% of ultra-violet and over 94.3%, 99.7% of visible light, and over 74.7%, 93.5% of near-infrared, respectively. Adipose tissue thickness of 0.25 and0.5 mm blocked over 98.3%, 100% of ultra-violet, over 94.7%, 99.7% of visible light, and over 88.1%, 98.6% of near-infrared, respectively. Muscle thickness of 0.25 and0.5 mm blocked over 95.4%, 99.8% of ultra-violet, over 93.1%, 99.5% of visible light, and over 86.9%, 98.3% of near-infrared, respectively. Conclusions: Humans possess endogenous biological protection against ultra-violet, visible light and near-infrared exposure on multiple levels, including through perspiration, sebum, blood, skin, adipose tissue, and muscle. Since solar and artificial radiation affects human tissues, biological defenses made of biological materials may be induced to protect subcutaneous tissues against these wavelengths.
文摘The response of steady-state fluorescence (Fs) to irradiance in apple (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd.) leaf increased and decreased at light levels below and above 400 mumol(.)m(-2.)s(-1) photosynthetic photon flux density (PPFD), respectively, while the light-adapted maximal fluorescence (Fm') and minimal fluorescence (Fo') decreased constantly with the increasing PPFD, and the closure of photosystem 11 reaction center (PS 11 RC) increased continuously, reflected by the chlorophyll fluorescence parameter of (Fs-Fo')/(Fm'-Fo'). These facts indicated that decrease of Fs above 400 mumol(.)m(-2.)s(-1) PPFD was not caused by closure of PS 11 RC, but was mainly resulted from the process of light transfer from light-harvesting complex II (LHC II) to PS II RC. In the presence of N- ethylmaleimide (NEM), an inhibitor of photosynthetic state transition, Fs kept on increasing in apple leaf at light levels from 400 to 700 mumol(.)m(-1.)s(-1), which was the photosynthetic saturation irradiance of apple leaves. In addition, Fs still increased at light levels over 700 mumol(.)m(-2.)s(-1) in apple leaf pre-treated with dithiothreitol (DTT), an inhibitor of xanthophyll cycle. These changes showed that state transition and xanthophyll cycle caused a decrease of Fs in apple leaf at light levels below and above the photosynthetic saturation irradiance, respectively. When apple leaf was pre-treated with NEM, the PS II apparent rate of photochemical reaction (P-rate) and photochemical quenching (qP) decreased significantly in the light range of 600-800 mumol(.)m(-2.)s(-1), but the non-photochemical quenching (qN) existed a small increase at 600-800 mumol(.)m(-2.)s(-1) and a decrease above 800 mumol(.)m(-2.)s(-1). These phenomena suggested that state transition was mainly a photochemical and a non-photochemical process in apple leaf responding to light lower and higher than photosynthetic saturation irradiance, respectively.
基金supported by the National Natural Science Foundation of China,China (32125032,31830073,and 31901853).
文摘The molecular mechanism underlying phototherapy and light treatment,which utilize various wavelength spectra of light,including near-infrared(NIR),to cure human and plant diseases,is obscure.Here we re-vealed that NIR light confers antiviral immunity by positively regulating PHYTOCHROME-INTERACTING FACTOR 4(PIF4)-activated RNA interference(RNAi)in plants.PIF4,a central transcription factor involved in light signaling,accumulates to high levels under NIR light in plants.PIF4 directly induces the transcription of two essential components of RNAi,RNA-DEPENDENT RNA POLYMERASE 6(RDR6)and ARGONAUTE 1(AGO1),which play important roles in resistance to both DNA and RNA viruses.Moreover,the pathogenic determinant bC1 protein,which is evolutionarily conserved and encoded by betasatellites,interacts with PIF4 and inhibits its positive regulation of RNAi by disrupting PIF4 dimerization.Thesefindings shed light on the molecular mechanism of PIF4-mediated plant defense and provide a new perspective for the explo-ration of NIR antiviral treatment.
基金National Natural Science Foundation of China,Grant/Award Numbers:22372094,21703039,21776168Natural Science Foundation of Shanxi Province,Grant/Award Number:20210302123461+2 种基金The Central Guidance Local Science and Technology Development in Shanxi Province Project,Grant/Award Number:YDZJSX2021A001Science and Technology Major Project of the Shanxi Science and Technology Department,Grant/Award Numbers:201903D121003,20181102019Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J22-23-605。
文摘Developing new photosystems that integrate broad-band near-infrared(NIR)light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community.In this work,we develop a novel photochemical strategy to prepare light-active carbon dots(CDs)under room temperature and discover that the aggregation of CDs can broaden the light absorption to the NIR region due to the electronic couplings between neighboring CDs.Importantly,the dynamic noncovalent interactions within CD aggregates can stabilize symmetry breaking and thus induce large dipole moments for charge separation and transfer.Furthermore,the weak non-covalent interactions allow for flexible design of the aggregated degrees and the local electronic structures of CD aggregates,further strengthening NIR-light harvesting and charge separation efficiency.As a result,the CD aggregates achieve a record apparent quantum yield of 13.5%at 800 nm,which is one of the best-reported values for NIR-light-driven hydrogen photosynthesis to date.Moreover,we have prepared a series of different CDs and also observed that these CDs after aggregation all exhibit outstanding NIR-responsive photocatalytic hydrogen production activity,suggesting the universality of aggregation-enhanced photocatalysis.This discovery opens a new promising platform for using CD aggregates as efficient light absorbers for solar conversion.