期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Suppressing neuroinflammation using the near-infrared light emitted by (Sr,Ba)Ga_(12)O_(19): Cr^(3+) phosphor
1
作者 Qi Liu Fangmei Yu +5 位作者 Hossein Chamkouri Yanguang Guo Ping Chen Bo Wang Dongwei Liu Lei Chen 《Advanced Photonics Nexus》 2024年第3期68-80,共13页
Neurodegenerative diseases,such as Parkinson’s and Alzheimer’s diseases,affect the elderly worldwide and will become more prevalent as the global population ages.Neuroinflammation is a common characteristic of neuro... Neurodegenerative diseases,such as Parkinson’s and Alzheimer’s diseases,affect the elderly worldwide and will become more prevalent as the global population ages.Neuroinflammation is a common characteristic of neurodegenerative diseases.By regulating the phenotypes of microglia,it is possible to suppress neuroinflammation and,in turn,help prevent neurodegenerative diseases.We report a noninvasive photonic approach to regulating microglia from overexcited M1/M2 to the resting M0 phenotype using a special near-infrared(NIR)light emitted by the SrGa_(12)O_(19)∶Cr^(3t) phosphor.The absorbance and internal and external quantum efficiencies of the optimal SreGa_(0.99)Cr_(0.01)_(12)O_(19) phosphor synthesized at 1400℃ for 8 h using 1%H_(3)BO_(3) t 1%AlF3 as flux are 53.9%,99.2%,and 53.5%;the output power and energyconversion efficiency of the LED device packaged using the optimal SrGa_(12)O_(19): Cr^(3+) phosphor driven at 20 mA reach unprecedentedly 19.69 mW and 37.58%,respectively.The broadband emission of the NIR LED device covers the absorption peaks of cytochrome c oxidase well,and the NIR light can efficiently promote the proliferation of microglia,produce adenosine triphosphate(ATP),reverse overexcitation,alleviate and inhibit inflammation,and improve cell survival rate and activity,showing great prospects for photomedicine application. 展开更多
关键词 near-infrared light LED SrGa_(12)O_(19):Cr^(3+)phosphor PHOTOBIOMODULATION NEUROINFLAMMATION microglia.
下载PDF
Near-infrared lead chalcogenide quantum dots:Synthesis and applications in light emitting diodes 被引量:2
2
作者 Haochen Liu Huaying Zhong +6 位作者 Fankai Zheng Yue Xie Depeng Li Dan Wu Ziming Zhou Xiao-Wei Sun Kai Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期1-13,共13页
This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It ... This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It summarizes the strategies of how to synthesize high efficiency PbX QDs and how to realize high performance Pb X based NIR-QLEDs. 展开更多
关键词 lead chalcogenide quantum dots near-infrared light emitting diodes
下载PDF
Multi-watt near-infrared light therapy as a neuroregenerative treatment for traumatic brain injury 被引量:1
3
作者 Theodore A.Henderson 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期563-565,共3页
Infrared light represents a broad spectrum of light with wavelengths from 700 nm to 1 million nm(1,000 microns).At its shortest wavelengths(referred to as near-infrared),it merges with the red spectrum of visible ... Infrared light represents a broad spectrum of light with wavelengths from 700 nm to 1 million nm(1,000 microns).At its shortest wavelengths(referred to as near-infrared),it merges with the red spectrum of visible light.At the longest end(referred to as far-infrared),it blends into the range of microwaves. 展开更多
关键词 TBI Multi-watt near-infrared light therapy as a neuroregenerative treatment for traumatic brain injury NIR
下载PDF
Photoprotective Ability of Sunscreens against Ultraviolet, Visible Light and Near-Infrared Radiation
4
作者 Yohei Tanaka 《Optics and Photonics Journal》 2023年第6期140-146,共7页
Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, p... Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage. 展开更多
关键词 Anti-Photoageing PHOTOPROTECTION SUNSCREEN ULTRAVIOLET Visible light near-infrared
下载PDF
Novel Low Viscosity Zinc Oxide, Iron Oxides and Erioglaucine Sunscreen Potential to Protect from Ultraviolet, Visible Light and Near-Infrared Radiation
5
作者 Yohei Tanaka Richard Parker +1 位作者 Amaryllis Aganahi Ailen Pedroso 《Optics and Photonics Journal》 2023年第9期217-226,共10页
Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously repor... Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage. 展开更多
关键词 Anti-Photoageing Photoimmunosuppression PHOTOPROTECTION SUNSCREEN ULTRAVIOLET Visible light near-infrared
下载PDF
Photoprotective Ability of Colored Iron Oxides in Tinted Sunscreens against Ultraviolet, Visible Light and Near-Infrared Radiation
6
作者 Yohei Tanaka Richard Parker Amaryllis Aganahi 《Optics and Photonics Journal》 2023年第8期199-208,共10页
Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also... Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection. 展开更多
关键词 Anti-Photoageing Photoimmunosuppression PHOTOPROTECTION SUNSCREEN ULTRAVIOLET Visible light near-infrared
下载PDF
Biological Defenses against Ultra-Violet, Visible Light, and Near-Infrared Exposure
7
作者 Yohei Tanaka Hideki Motomura Masafumi Jinno 《Optics and Photonics Journal》 2016年第1期8-14,共7页
Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared expos... Objective: Humans are increasingly exposed to artificial light and electromagnetic wave radiation, in addition to solar radiation. Many studies have shown the biological effects of ultra-violet and near-infrared exposure, but few have extensively investigated the innate biological defenses within human tissues against visible light and near-infrared exposure. Herein, we investigated spectral properties of endogenous human biological defenses against ultra-violet to near-infrared. Methods: A double-beam spectrophotometer (190 - 2700 nm) was used to measure the transmission spectra of a saline solution used to imitate perspiration, and oil to imitate sebum, as well as human skin, blood, adipose tissue, and muscle. Results: Saline (thickness, 0.5 mm) blocked 27.5% - 98.6% of ultra-violet, 13.2% - 34.3% of visible light, and 10.7% - 99.8% of near-infrared. Oil (thickness, 0.5 mm) blocked 50.5% - 100% of ultra-violet, 28.7% - 54.8% of visible light, and 19.0% - 98.3% of near-infrared. Blood thicknesses of 0.05 and 0.5 mm blocked over 97.8%, 100% of ultra-violet, over 94.6%, 99.7% of visible light, and over 75.8%, 99.4% of near-infrared, respectively. Skin thicknesses of 0.25 and 0.5 mm blocked over 99.4%, 100% of ultra-violet and over 94.3%, 99.7% of visible light, and over 74.7%, 93.5% of near-infrared, respectively. Adipose tissue thickness of 0.25 and0.5 mm blocked over 98.3%, 100% of ultra-violet, over 94.7%, 99.7% of visible light, and over 88.1%, 98.6% of near-infrared, respectively. Muscle thickness of 0.25 and0.5 mm blocked over 95.4%, 99.8% of ultra-violet, over 93.1%, 99.5% of visible light, and over 86.9%, 98.3% of near-infrared, respectively. Conclusions: Humans possess endogenous biological protection against ultra-violet, visible light and near-infrared exposure on multiple levels, including through perspiration, sebum, blood, skin, adipose tissue, and muscle. Since solar and artificial radiation affects human tissues, biological defenses made of biological materials may be induced to protect subcutaneous tissues against these wavelengths. 展开更多
关键词 Biological Defenses near-infrared Ultra-Violet Visible light
下载PDF
Fabrication of PdSe2/GaAs Heterojunction for Sensitive Near-Infrared Photovoltaic Detector and Image Sensor Application 被引量:4
8
作者 Lin-bao Luo Xiu-xing Zhang +6 位作者 Chen Li Jia-xiang Li Xing-yuan Zhao Zhi-xiang Zhang Hong-yun Chen Di Wu Feng-xia Liang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第6期733-742,I0003,共11页
In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaA... In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaAs heterojunction device exhibited obvious photovoltaic behavior to 808 nm illumination,indicating that the near-infrared photodetector can be used as a self-driven device without external power supply.Further device analysis showed that the hybrid heterojunction exhibited a high on/off ratio of 1.16×10^5 measured at 808 nm under zero bias voltage.The responsivity and specific detectivity of photodetector were estimated to be 171.34 mA/W and 2.36×10^11 Jones,respectively.Moreover,the device showed excellent stability and reliable repeatability.After 2 months,the photoelectric characteristics of the near-infrared photodetector hardly degrade in air,attributable to the good stability of the PdSe2.Finally,the PdSe2/GaAs-based heterojunction device can also function as a near-infrared light sensor. 展开更多
关键词 van der Waals heterojunction Two dimensional materials near-infrared light photodetector Image sensor RESPONSIVITY
下载PDF
High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared region
9
作者 高雨航 田宇 +6 位作者 杜庆国 王原丽 付琴 卞强 李政颖 冯帅 任芳芳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期368-374,共7页
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly... Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm. 展开更多
关键词 asymmetric polarization converter visible and near-infrared light chiral metasurface Fabry-Perot like resonance
下载PDF
Near-infrared light and PIF4 promote plant antiviral defense by enhancing RNA interference 被引量:1
10
作者 Xuan Zhang Duan Wang +3 位作者 Pingzhi Zhao Yanwei Sun Rong-Xiang Fang Jian Ye 《Plant Communications》 SCIE CSCD 2024年第1期41-54,共14页
The molecular mechanism underlying phototherapy and light treatment,which utilize various wavelength spectra of light,including near-infrared(NIR),to cure human and plant diseases,is obscure.Here we re-vealed that NIR... The molecular mechanism underlying phototherapy and light treatment,which utilize various wavelength spectra of light,including near-infrared(NIR),to cure human and plant diseases,is obscure.Here we re-vealed that NIR light confers antiviral immunity by positively regulating PHYTOCHROME-INTERACTING FACTOR 4(PIF4)-activated RNA interference(RNAi)in plants.PIF4,a central transcription factor involved in light signaling,accumulates to high levels under NIR light in plants.PIF4 directly induces the transcription of two essential components of RNAi,RNA-DEPENDENT RNA POLYMERASE 6(RDR6)and ARGONAUTE 1(AGO1),which play important roles in resistance to both DNA and RNA viruses.Moreover,the pathogenic determinant bC1 protein,which is evolutionarily conserved and encoded by betasatellites,interacts with PIF4 and inhibits its positive regulation of RNAi by disrupting PIF4 dimerization.Thesefindings shed light on the molecular mechanism of PIF4-mediated plant defense and provide a new perspective for the explo-ration of NIR antiviral treatment. 展开更多
关键词 light near-infrared PIF4 RNAI plant antiviral immunity
原文传递
Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light 被引量:1
11
作者 Qi Zhang Ya Zhang +5 位作者 Hu Shi Hongxia Zhang Jianghong Zhao Zhanfeng Zheng Hengquan Yang Pengju Yang 《Aggregate》 EI CAS 2024年第1期385-397,共13页
Developing new photosystems that integrate broad-band near-infrared(NIR)light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community.In this work,we develop a novel photochemi... Developing new photosystems that integrate broad-band near-infrared(NIR)light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community.In this work,we develop a novel photochemical strategy to prepare light-active carbon dots(CDs)under room temperature and discover that the aggregation of CDs can broaden the light absorption to the NIR region due to the electronic couplings between neighboring CDs.Importantly,the dynamic noncovalent interactions within CD aggregates can stabilize symmetry breaking and thus induce large dipole moments for charge separation and transfer.Furthermore,the weak non-covalent interactions allow for flexible design of the aggregated degrees and the local electronic structures of CD aggregates,further strengthening NIR-light harvesting and charge separation efficiency.As a result,the CD aggregates achieve a record apparent quantum yield of 13.5%at 800 nm,which is one of the best-reported values for NIR-light-driven hydrogen photosynthesis to date.Moreover,we have prepared a series of different CDs and also observed that these CDs after aggregation all exhibit outstanding NIR-responsive photocatalytic hydrogen production activity,suggesting the universality of aggregation-enhanced photocatalysis.This discovery opens a new promising platform for using CD aggregates as efficient light absorbers for solar conversion. 展开更多
关键词 AGGREGATION charge separation hydrogen production near-infrared light PHOTOCATALYSIS
原文传递
Achieving near-infrared-light-mediated switchable friction regulation on MXene-based double network hydrogels 被引量:1
12
作者 Pengxi WU Cheng ZENG +3 位作者 Jinglun GUO Guoqiang LIU Feng ZHOU Weimin LIU 《Friction》 SCIE EI CAS CSCD 2024年第1期39-51,共13页
MXene possesses great potential in enriching the functionalities of hydrogels due to its unique metallic conductivity,high aspect ratio,near-infrared light(NIR light)responsiveness,and wide tunability,however,the poor... MXene possesses great potential in enriching the functionalities of hydrogels due to its unique metallic conductivity,high aspect ratio,near-infrared light(NIR light)responsiveness,and wide tunability,however,the poor compatibility of MXene with hydrogels limits further applications.In this work,we report a uniformly dispersed MXene-functionalized poly-N-isopropylacrylamide(PNIPAM)/poly-2-acrylamido-2-methyl-1-propanesulfonic acid(PAMPS)double network hydrogel(M–DN hydrogel)that can achieve switchable friction regulation by using the NIR light.The dispersity of MXene in hydrogels was significantly improved by incorporating the chitosan(CS)polymer.This M–DN hydrogel showed much low coefficient of friction(COF)at 25℃ due to the presence of hydration layer on hydrogel surface.After illuminating with the NIR light,M–DN hydrogel with good photothermal effect rapidly raised the temperature to above the lower critical solution temperature(LCST),which led to an obvious increase of surface COF owing to the destruction of the hydration layer.In addition,M–DN friction control hydrogel showed good recyclability and controllability by tuning“on-off”of the NIR light.This work highlights the construction of functional MXene hydrogels for intelligent lubrication,which provides insight for interface sensing,controlled transmission,and flexible robotic arms. 展开更多
关键词 MXene dispersion photothermal hydrogel near-infrared(NIR)light friction modulation
原文传递
Zinc oxide nanoparticles with catalase-like nanozyme activity and near-infrared light response:A combination of effective photodynamic therapy,autophagy,ferroptosis,and antitumor immunity
13
作者 Jingru Wang Man Liu +11 位作者 Jingwen Wang Zhuoyue Li Zhenhan Feng Meiqi Xu Hui Wang Hui Li Zhantao Li Jianming Yu Junwei Liu Qingchao Wei Shuang Zhang Xuan Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第10期4493-4508,共16页
We prepared biocompatible and environment-friendly zinc oxide nanoparticles(ZnO NPs)with upconversion properties and catalase-like nanozyme activity.Photodynamic therapy(PDT)application is severely limited by the poor... We prepared biocompatible and environment-friendly zinc oxide nanoparticles(ZnO NPs)with upconversion properties and catalase-like nanozyme activity.Photodynamic therapy(PDT)application is severely limited by the poor penetration of UV-Visible light and a hypoxic tumor environment.Here,we used ZnO NPs as a carrier for the photosensitizer chlorin e6(Ce6)to construct zinc oxide-chlorin e6 nanoparticles(ZnO-Ce6 NPs),simultaneously addressing both problems.In terms of penetration,ZnO NPs convert 808 nm near-infrared light into 401 nm visible light to excite Ce6,achieving deep-penetrating photodynamic therapy under long-wavelength light.Interestingly,the ability to emit short-wavelength light under long-wavelength light is usually observed in upconversion nanoparticles.As nanozymes,ZnO NPs can catalyze the decomposition of hydrogen peroxide in tumors,providing oxygen for photodynamic action and relieving hypoxia.The enhanced photodynamic action produces a large amount of reactive oxygen species,which overactivate autophagy and trigger immunogenic cell death(ICD),leading to antitumor immunotherapy.In addition,even in the absence of light,ZnO and ZnO-Ce6 NPs can induce ferroptosis of tumor cells and exert antitumor effects. 展开更多
关键词 Photodynamic therapy near-infrared light Tissue penetration Catalase-like nanozyme Ferroptosis AUTOPHAGY IMMUNITY Zinc oxide nanoparticles
原文传递
pH- and near-infrared light-responsive,biomimetic hydrogels from aqueous dispersions of carbon nanotubes
14
作者 Lulin Hu Xinxin Yu +1 位作者 Jingcheng Hao Lu Xu 《Nano Research》 SCIE EI CSCD 2024年第4期3120-3129,共10页
Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies... Owing to their low flexibility,poor processability and a lack of responsiveness,inorganic materials are usually non-ideal for constructing a living organism.Hence,to date,lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules,although few exceptions have been acquired using two-dimensional(2D)inorganic nanosheets.Herein,with a systematic study on the gelation behavior of carbon-based 0D quantum dots,1D nanotubes,and 3D fullerenes,we find that acidified 1D carbon nanotubes(CNTs)can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials.The as-prepared CNT gels exhibit not only a pH-or photothermal-triggered mechanical and tribological adaptivity,which allows them to simulate the behavior of sea cucumbers,peacock mantis shrimps,and mammalian muscles or cortical bones,but also a unique damping property that is similar to spider’s cuticular pad.Their high elasticity,effective lubrication,excellent biocompatibility,and controllable friction and wear also allow them to function as a new type of smart lubricants,whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared(NIR)light irradiations,free of any toxic and flammable base oils or additives. 展开更多
关键词 biomimetic hydrogels carbon nanotubes(CNTs) mechanical and tribological adaptivity pH-and near-infrared(NIR)light responsiveness switchable lubrication
原文传递
Effects of stimulating frequency of NIR LEDs light irradiation on forehead as quantified by EEG measurements
15
作者 Liuye Yao Zhiyu Qian +3 位作者 Yangyang Liu Zhou Fang Weitao Li Lidong Xing 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2021年第2期19-30,共12页
Near-infrared(NIR)light has been shown to produce a range of physiological effects in hunans,however,there is still no agreement on whether and how a single parameter,like the flicker frequency of NIR light,affects th... Near-infrared(NIR)light has been shown to produce a range of physiological effects in hunans,however,there is still no agreement on whether and how a single parameter,like the flicker frequency of NIR light,affects the brain.An 810 nm NIR LED was used as the stimulator.Fifty subjects participated in this experiment.Forty subjects were randomly divided into four groups.Each group underwent a 30-minute NIR LED radiation with four different frequencies(i.e.,0 Hz,5 Hz,10 Hz and 20 Hz,respectively)on the forehead.The remaining 10 subjects formed the control group,in which they underwent a 30-minute rest period without light radiation.EEG signals of all subjects during each test were recorded.Gravity frequency(GF),relative energy change,and sample entropy were analyzed.The experimental groups had larger GF values compared to the control group.Higher stimulation frequency would cause larger growth of GF(F=14.75,P<0.001).The amplitude of alpha waves relative energy increased,while theta waves decreased remarkably in the experimental groups(p<0.02),and the extent of increase/decrease was larger at higher stimulation frequency,compared to that of the control.Sample entropy of electrodes in the frontal areas were much larger than those in other brain areas in the experimental groups(p<0.001).Larger frequency of the NIR LED light would cause more distinct brain activities in the stimulated areas.It indicates that NIR LED light may have a positive effect on modulating brain activity.These results may help improve the design of photobiomodulation treatments in the future. 展开更多
关键词 PHOTOBIOMODULATION LED light therapy near-infrared light gravity frequency relative energy
下载PDF
Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors 被引量:7
16
作者 Xinli Liu Yongchun Pan +5 位作者 Jingjing Yang Yanfeng Gao Ting Huang Xiaowei Luan Yuzhen Wang Yujun Song 《Nano Research》 SCIE EI CAS CSCD 2020年第3期653-660,共8页
We report gold nanoparticles(AuNPs)doped iron-based metal-organic frameworks(GIM)which displays near-infrared light(NIR)-enhanced cascade nanozyme against hypoxic tumors.Due to the strong protein adsorption-induced su... We report gold nanoparticles(AuNPs)doped iron-based metal-organic frameworks(GIM)which displays near-infrared light(NIR)-enhanced cascade nanozyme against hypoxic tumors.Due to the strong protein adsorption-induced surface passivation,AuNPs suffer from the loss of glucose oxidase(GOx)activity.However,GIM could protect the GOx-like activity of AuNPs with the satisfactory shield capability.In addition,GIM exhibited excellent photothermal conversion ability and unique NIR light-enhanced GOx-like activity,which could efficiently increase the endogenous H2O2 production.Meanwhile,as the produced H2O2 is converted by GIM into O2 and highly toxic OH.Thus,GIM-catalyzed cascade reactions with NIR light irradiation not only offer the O2 but also promote the reactive oxygen species(ROS)generation at tumor sites.The produced O2 could be further applied to AuNPs catalytic oxidation of glucose and relieve hypoxic condition of tumor microenvironment(TME).As a proof-of-concept study,GIM demonstrates the admirable tumor ablation under NIR irradiation in vivo. 展开更多
关键词 nanozyme metal-organic frameworks gold nanoparticles near-infrared light reactive oxygen species
原文传递
A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation 被引量:5
17
作者 Haitao Cui Shida Miao +6 位作者 Timothy Esworthy Se-jun Lee Xuan Zhou Sung Yun Hann Thomas J.Webster Brent T.Harris Lijie Grace Zhang 《Nano Research》 SCIE EI CAS CSCD 2019年第6期1381-1388,共8页
Four-dimensional (4D) printing is an emerging and highly innovative additive manufacturing process by which to fabricate pre-designed,self-assembly structures with the ability to transform over time.However,one of the... Four-dimensional (4D) printing is an emerging and highly innovative additive manufacturing process by which to fabricate pre-designed,self-assembly structures with the ability to transform over time.However,one of the critical challenges of 4D printing is the lack of advanced 4D printing systems that not only meet all the essential requirements of shape change but also possess smart,dynamic capabilities to spatiotemporally and instantly control the shape-transformation process.Here,we present a facile 4D printing platform which incorporates nanomaterials into the conventional stimuli-responsive polymer,allowing the 4D printed object to achieve a dynamic and remote controlled,on-time and position shape transformation.A proof-of-concept 4D printed brain model was created using near-infrared light (NIR) responsive nanocomposite to evaluate the capacity for controllable 4D transformation,and the feasibility of photothermal stimulation for modulating neural stem cell behaviors.This novel 4D printing strategy can not only be used to create dynamic 3D patterned biological structures that can spatiotemporally control their shapes or behaviors of transformation under a human benign stimulus (NIR),but can also provide a potential method for building complex self-morphing objects for widespread applications. 展开更多
关键词 near-infrared light RESPONSIVE four-dimensional (4D) PRINTING dynamically and remotely CONTROLLABLE graphene brain NEURAL stem cell
原文传递
用于紫外光辅助直书写3D打印的光敏硅橡胶墨水性能研究
18
作者 丁志成 耿呈祯 +4 位作者 岳学俊 曹奇鑫 张亚玲 刘禹 芦艾 《有机硅材料》 CAS 2024年第5期1-7,12,共8页
基于巯烯点击化学反应,制备了一系列可用于紫外光辅助直书写3D打印的硅橡胶墨水,利用旋转流变仪、固体流变仪、紫外可见分光光度计等分析了交联剂巯基含量、白炭黑用量对光敏硅橡胶墨水流变性、透光性、光固化深度和力学性能的影响。结... 基于巯烯点击化学反应,制备了一系列可用于紫外光辅助直书写3D打印的硅橡胶墨水,利用旋转流变仪、固体流变仪、紫外可见分光光度计等分析了交联剂巯基含量、白炭黑用量对光敏硅橡胶墨水流变性、透光性、光固化深度和力学性能的影响。结果表明,白炭黑用量和交联剂巯基含量的增加均能提高墨水的屈服应力,同时降低制品的透明性,从而降低固化深度;制品的力学性能受交联剂巯基含量、白炭黑补强效应、固化深度的综合影响。当交联剂巯基含量较低时,制品拉伸强度随白炭黑用量的增加而提高;但当交联剂巯基含量很高时,较高的白炭黑用量反而会降低制品的力学强度;可根据需求调节交联剂巯基含量和白炭黑用量,进而平衡墨水的各项性能,使墨水具有良好的可打印性。采用紫外光辅助直书写3D打印,可实现一般直写技术难以完成的无塌陷、大跨距结构的制备。 展开更多
关键词 直写式3D打印 硅橡胶 流变性能 透光性 UV固化深度
下载PDF
Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65 % for highly efficient disinfection under near-infrared light 被引量:2
19
作者 Jie Song Jun Li +8 位作者 Xiangren Bai Liang Kang Liying Ma Naiqin Zhao Shuilin Wu Yuan Xue Jiajun Li Xiaojian Ji Junwei Sha 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期83-94,共12页
Low photothermal conversion efficiency restricts the antibacterial application of photothermal materials.In this work,two-dimensional carbon nanosheets(2D C)were prepared and decorated with Cu nanoparticles(2D C/Cu)by... Low photothermal conversion efficiency restricts the antibacterial application of photothermal materials.In this work,two-dimensional carbon nanosheets(2D C)were prepared and decorated with Cu nanoparticles(2D C/Cu)by using a simple soluble salt template method combined with ultrasonic exfoliation.The photothermal conversion efficiency of 2 D C/Cu system can be optimized by changing the content of Cu nanoparticles,where the 2D C/Cu2 showed the best photothermal conversion efficiency(á)of 65.05%under 808 nm near-infrared light irradiation.In addition,the photothermal performance can affect the release behavior of Cu ions.This superior photothermal property combined with released Cu ions can endow this 2D hybrid material with highly efficient antibacterial efficacy of 99.97%±0.01%,99.96%±0.01%,99.97%±0.01%against Escherichia coli,Staphylococcus aureus,and methicillin-resistant Staphylococcus aureus,respectively,because of the synergetic effect of photothermy and ion release.In addition,this 2D hybrid system exhibited good cytocompatibility.Hence,this study provides a novel strategy to enhance the photothermal performance of 2D materials and thus will be beneficial for development of antibiotics-free antibacterial materials with safe and highly efficient bactericidal activity. 展开更多
关键词 Photothermal conversion Antibacterial Two-dimensional carbon nanosheet Cu nanoparticle near-infrared light
原文传递
Thermally-assisted photodegradation of lignin by TiO_2/H_2O_2 under visible/near-infrared light irradiation 被引量:2
20
作者 陈骏 刘温霞 +1 位作者 李真真 刘宏 《Science China Materials》 SCIE EI CSCD 2018年第3期382-390,共9页
As a bio-recalcitrant organic pollutant in paper mill effluent, lignin is generally removed by an advanced oxidation process, such as a TiO2/H2O2 photocatalytic technique under irradiation with ultraviolet light, whic... As a bio-recalcitrant organic pollutant in paper mill effluent, lignin is generally removed by an advanced oxidation process, such as a TiO2/H2O2 photocatalytic technique under irradiation with ultraviolet light, which only accounts for less than 5% of sunlight. Herein, we reported a TiO2/H2O2-based thermally-assisted photocatalytic process that allows lignin to be efficiently degraded under visible/near-infrared light at an elevated temperature. Adsorption of H2O2 on TiO2 nanoparticles and an increase of temperature facilitate the production and separation of charge carriers under near-infrared and visible light irradiation, accelerate carrier transfer at the TiO2-electrolyte interface and promote the production of hydroxyl radicals, A higher level of H2O2 addition results in an increased degradation rate of lignin,while the optimal temperature for the thermally-assisted photodegradation of lignin is 70℃. A charge carrier excitation and transfer process was proposed for the TiO2/H2O2, thermally-assisted photocatalytic process. This work describes a new method for the photodegradation of organic pollutants,such as residual lignin in paper mill effluent, using wide band gap semiconductors under visible and near-infrared light irradiation. 展开更多
关键词 LIGNIN thermally-assisted photocatalysis TiO2 H2O2 near-infrared light
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部