Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene base...Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.展开更多
The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(...The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(2)-based photodetection faces obstacles,including slow response speed and low normalized detectivity.In this work,photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures have been implemented through a polydimethylsiloxane(PDMS)−assisted transfer method.These photodetectors demonstrate broad-spectrum photoresponse within the 405 to 850 nm wavelength range.The photodetector based on the SnS/SnSe_(2)heterostructure exhibits a significant responsivity of 4.99×10^(3)A∙W^(−1),normalized detectivity of 5.80×10^(12)cm∙Hz^(1/2)∙W^(−1),and fast response time of 3.13 ms,respectively,owing to the built-in electric field.Meanwhile,the highest values of responsivity,normalized detectivity,and response time for the photodetector based on the SnSe/SnSe_(2)heterostructure are 5.91×10^(3)A∙W^(−1),7.03×10^(12)cm∙Hz^(1/2)∙W−1,and 4.74 ms,respectively.And their photodetection performances transcend those of photodetectors based on individual SnSe_(2),SnS,SnSe,and other commonly used 2D materials.Our work has demonstrated an effective strategy to improve the performance of SnSe_(2)-based photodetectors and paves the way for their future commercialization.展开更多
High-quality narrow bandgap semiconductors nanowires(NWs)challenge the flexible near-infrared(NIR)photodetectors in next-generation imaging,data communication,environmental monitoring,and bioimaging applications.In th...High-quality narrow bandgap semiconductors nanowires(NWs)challenge the flexible near-infrared(NIR)photodetectors in next-generation imaging,data communication,environmental monitoring,and bioimaging applications.In this work,complementary metal oxide semiconductor-compatible metal of Ag is deposited on glass as the growth catalyst for the surfactantassisted chemical vapor deposition of GaSb NWs.The uniform morphology,balance stoichiometry,high-quality crystallinity,and phase purity of as-prepared NWs are checked by scanning electron microscopy,energy dispersive X-ray spectroscopy,high-resolution transmission electron microscopy,and X-ray diffraction.The electrical properties of as-prepared NWs are studied by constructing back-gated field-effect-transistors,displaying a high I_(on)/I_(off) ratio of 10^(4) and high peak hole mobility of 400 cm^(2)/(V·s).Benefiting from the excellent electrical and mechanical flexibility properties,the as-fabricated NW flexible NIR photodetector exhibits high sensitivity and excellent photoresponse,with responsivity as high as 618 A/W and detectivity as high as 6.7×10^(10) Jones.Furthermore,there is no obvious decline in NIR photodetection behavior,even after parallel and perpendicular folding with 1200 cycles.展开更多
In Ga As is an important bandgap-variable ternary semiconductor which has wide applications in electronics and optoelectronics. In this work, single-crystal In Ga As nanowires were synthesized by a chemical vapor depo...In Ga As is an important bandgap-variable ternary semiconductor which has wide applications in electronics and optoelectronics. In this work, single-crystal In Ga As nanowires were synthesized by a chemical vapor deposition method.Photoluminescence measurements indicate the In Ga As nanowires have strong light emission in near-infrared region. For the first time, photodetector based on as-grown In Ga As nanowires was also constructed. It shows good light response over a broad spectral range in infrared region with responsivity of 6.5×10~3 AW^(-1) and external quantum efficiency of 5.04×10~5%. This photodetector may have potential applications in integrated optoelectronic devices and systems.展开更多
Graphene and transition metal dichalcogenides(TMDs), two-dimensional materials, have been investigated wildely in recent years. As a member of the TMD family, MoTe2 possesses a suitable bandgap of ~1.0 eV for near inf...Graphene and transition metal dichalcogenides(TMDs), two-dimensional materials, have been investigated wildely in recent years. As a member of the TMD family, MoTe2 possesses a suitable bandgap of ~1.0 eV for near infrared(NIR)photodetection. Here we stack the MoTe2 flake with two graphene flakes of high carrier mobility to form a graphene–MoTe2–graphene heterostructure. It exhibits high photo-response to a broad spectrum range from 500 nm to 1300 nm. The photoresponsivity is calculated to be 1.6 A/W for the 750-nm light under 2 V/0 V drain–source/gate bias, and 154 mA/W for the 1100-nm light under 0.5 V/60 V drain–source/gate bias. Besides, the polarity of the photocurrent under zero Vds can be efficiently tuned by the back gate voltage to satisfy different applications. Finally, we fabricate a vertical graphene–MoTe2–graphene heterostructure which shows improved photoresponsivity of 3.3 A/W to visible light.展开更多
High quality PbSe film was first fabricated by a thermal evaporation method, and then the effect of plasma sensitization on the PbSe film was systemically investigated. Typical detectivity and significant photosensiti...High quality PbSe film was first fabricated by a thermal evaporation method, and then the effect of plasma sensitization on the PbSe film was systemically investigated. Typical detectivity and significant photosensitivity are achieved in the PbSe-based photodetector, reaching maximum values of 7.6 × 10^(9)cm·Hz^(1/2)/W and 1.723 A/W, respectively. Compared with thermal annealing, plasma sensitization makes the sensitization easier and significantly improves the performance.展开更多
Single wall carbon nanotube(SWCNT)/Si heterojunction photodetectors have the advantages of high photoresponse ability and simple structure,however,their detection wavelength range are usually lower than 1100 nm,which ...Single wall carbon nanotube(SWCNT)/Si heterojunction photodetectors have the advantages of high photoresponse ability and simple structure,however,their detection wavelength range are usually lower than 1100 nm,which limits their application in the infrared band.We report a SWCNT/Cu/Si photodetector with both a high photoresponse and a detection range up to the infrared band by depositing a Cu nanoparticles(NPs)layer between a SWCNT film and a n-Si substrate.It was found that the Cu NPs produce strong surface plasmon resonance(SPR)under laser irradiation,which breaks through the limitation of Si band gap and greatly improves the photoresponse of the SWCNT/Cu/Si photodetector in the near infrared band.The responsivity(R)of the photodetector in the wavelength range of 1850–1200 nm reached 2.2–14.15 mA/W,which is the highest value in the reported plasmon enhanced n-Si based photodetectors,and about 20,000 times higher than that of a SWCNT/Si photodetector.Its R value for 1550 nm wavelength used in optical communications reached~8.2 mA/W,which is 64%higher than the previously reported values of commonly used photodetectors.We attribute the significant increase to the strong SPR and low Schottky barrier of Cu with n-Si,which facilitates the generation and transfer of the carriers.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
van der Waals heterostructures(vdWHs)based on two-dimensional(2D)materials without the crystal lattice matching constraint have great potential for high-performance optoelectronic devices.Herein,a WS_(2)/InSe vdWH pho...van der Waals heterostructures(vdWHs)based on two-dimensional(2D)materials without the crystal lattice matching constraint have great potential for high-performance optoelectronic devices.Herein,a WS_(2)/InSe vdWH photodiode is proposed and fabricated by precisely stacking InSe and WS_(2)flakes through an all-dry transfer method.The WS_(2)/InSe vdWH forms an n–n heterojunction with strong built-in electric field due to their intrinsic n-type semiconductor characteristics and energy-band alignments with a large Fermi level offset between WS_(2)and InSe.As a result,the device displays excellent photovoltaic behavior with a large open voltage of 0.47 V and a short-circuit current of 11.7 nA under 520 nm light illumination.Significantly,a fast rising/decay time of 63/76μs,a large light on/off ratio of 105,a responsivity of 61 mA/W,a high detectivity of 2.5×10^(11) Jones,and a broadband photoresponse ranging from ultraviolet to near-infrared(325–980 nm)are achieved at zero bias.This study provides a strategy for developing high-performance self-powered broadband photodetectors based on 2D materials.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection...Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.展开更多
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi...After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.展开更多
Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct in...Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.展开更多
Comprehensive Summary Near infrared light organic photodetectors have attracted tremendous attention due to their tailorable response,ease of processing,compatibility with flexible substrate,room temperature operation...Comprehensive Summary Near infrared light organic photodetectors have attracted tremendous attention due to their tailorable response,ease of processing,compatibility with flexible substrate,room temperature operation and broad applications such as remote sensing,health monitoring,artificial vision,night vision,and so on.Recently,the great improvement obtained on the important figures of merit performances has made organic photodetectors catch up and even surpass those of inorganic photodetectors in some respects.In this review,after a brief illustration of the organic photodetectors'figures of merit performances,we summarize the research progress of panchromatic and narrowband near infrared light organic photodetectors from their working mechanism,strategies to achieve narrowband near infrared light organic photodetectors,to some practical applications.Finally,we discuss the development challenge of the near infrared light organic photodetectors.展开更多
Organic near-infrared(NIR)photodetectors with essential applications in medical diagnostics,night vision,remote sensing,and optical communications have attracted intensive research interest.Compared with most conventi...Organic near-infrared(NIR)photodetectors with essential applications in medical diagnostics,night vision,remote sensing,and optical communications have attracted intensive research interest.Compared with most conventional inorganic counterparts,organic semiconductors usually have higher absorption coefficients,and their thin active layer could be sufficient to absorb most incident light for effective photogeneration.However,due to the relatively poor charge mobility of organic materials,it remains challenging to inhibit the photogenerated exciton recombination and effectively extract carriers to their respective electrodes.Herein,this challenge was addressed by increasing matrix conductivities of a ternary active layer(D–A–D structure NIR absorber[2TT-oC6B]:poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidin[PolyTPD]:[6,6]-phenyl-C61-butyric acid methyl ester[PCBM]=1:1:1)upon in situ incident light illumination,significantly accelerating charge transport through percolated interpenetrating paths.The greatly enhanced photoconductivity under illumination is intrinsically related to the unique donor–acceptor molecular structures of PolyTPD and 2TT-oC6B,whereas stable intermolecular interaction has been verified by systematic molecular dynamics simulation.In addition,an ultrafast charge transfer time of 0.56 ps from the NIR aggregation-induced luminogens of 2TT-oC6B absorber to PolyTPD and PCBM measured by femtosecond transient absorption spectroscopy is beneficial for effective exciton dissociation.The solution-processed organic NIR photodetector exhibits a fast response time of 83μs and a linear dynamic range value of 111 dB under illumination of 830 nm.Therefore,our work has opened up a pioneering window to enhance photoconductivity through in situ photoirradiation and benefit NIR photodetectors as well as other optoelectronic devices.展开更多
A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried ...A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried out on a SOI substrate by using a UHV/CVD SiGe/Si heteroepitaxy technology and a CMOS/SOI process.Biased at 3 0V,the photodetector attained a responsivity of 0 38A/W at its peak response wavelength 0 93μm and exhibited extremely low dark current of less than 1nA,small parasitic capacitance of less than 1 0pF,and short rise time of 2 5ns.The distinct characteristics and process compatibility make it applicable to integrate the photodetector with other silicon based devices to meet the needs of high speed near infrared signal detections.展开更多
The efficient near-infrared light detection of the MoTe2/germanium(Ge)heterojunction has been demonstrated.The fabricated MoTe2/Ge van der Waals heterojunction shows excellent photoresponse performances under the illu...The efficient near-infrared light detection of the MoTe2/germanium(Ge)heterojunction has been demonstrated.The fabricated MoTe2/Ge van der Waals heterojunction shows excellent photoresponse performances under the illumination of a 915 nm laser.The photoresponsivity and specific detectivity can reach to 12,460 A/W and 3.3×10^12 Jones,respectively.And the photoresponse time is 5 ms.However,the MoTe2/Ge heterojunction suffers from a large reverse current at dark due to the low barrier between MoTe2 and Ge.Therefore,to reduce the reverse current,an ultrathin GeO2 layer deposited by ozone oxidation has been introduced to the MoTe2/Ge heterojunction.The reverse current of the MoTe2/GeO2/Ge heterojunction at dark was suppressed from 0.44µA/µm^2 to 0.03 nA/µm^2,being reduced by more than four orders of magnitude.The MoTe2/Ge heterojunction with the GeO2 layer also exhibits good photoresponse performances,with a high responsivity of 15.6 A/W,short response time of 5 ms,and good specific detectivity of 4.86×10^11 Jones.These properties suggest that MoTe2/Ge heterostructure is one of the promising structures for the development of high performance near-infrared photodetectors.展开更多
Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximatel...Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.展开更多
Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–br...Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.展开更多
Flexible narrowband near infrared(NIR)photodetectors(PDs)are urgently in demand in the fastdeveloping era of flexible electronics,due to their crucial roles in various innovative applications.Hence,we designed and syn...Flexible narrowband near infrared(NIR)photodetectors(PDs)are urgently in demand in the fastdeveloping era of flexible electronics,due to their crucial roles in various innovative applications.Hence,we designed and synthesized the core-shell structured NaYF4:Yb^(3+),Er^(3+)@NaYF4:Nd^(3+)upconversion nanoparticles(UCNPs),which can be pumped by the 808 and 980 nm lights.The upconversion luminescence(UCL)are significantly enhanced after being assembled with the opal photonic crystals(OPCs)due to the photonic crystal effect,with 55 and 48 folds of enhancement factors under illuminations of 808 and 980 nm lights,respectively.Based on this hybrid,the flexible narrowband PDs were successfully fabricated on the PET substrate with the structure of OPCs/NaYF4:Yb^(3+),Er^(3+)@Nd^(3+)/MAPbl3,which displays excellent detection performance to double narrowband NIR light(808 and 980 nm)benefiting from the amplified UCL,with responsivity of 8.79 and 7.39 A/W,detectivity of 3.01×10^(11)and2.68×10^(11)cm·Hz^(1/2)/W for 808 and 980 nm lights detection respectively,along with short response time in the range of 120-160 ms.Furthermore,the OPCs/NaYF4:Yb^(3+),Er^(3+)@NaYF4:Nd^(3+)/MAPbI3 double narrowband PDs display low photodetection power threshold(0.05 W/cm2),outstanding flexibility,prominent moisture resistance,and good long-time stability.This work displays a new concept of narrowband NIR PDs,which open a new field for specific NIR light detections.展开更多
基金supported by National Natural Science Foundation of China(51672308,51972025,61888102,and 62004187).
文摘Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.
基金supported by the Jilin Scientific and Technological Development Program(Grant No.20230101286JC)National Natural Science Foundation of China(Grant Nos.61975051,6227503,and 52002110)Hebei Provincial Department of Education Innovation Ability Training Funding Project for graduate students.
文摘The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(2)-based photodetection faces obstacles,including slow response speed and low normalized detectivity.In this work,photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures have been implemented through a polydimethylsiloxane(PDMS)−assisted transfer method.These photodetectors demonstrate broad-spectrum photoresponse within the 405 to 850 nm wavelength range.The photodetector based on the SnS/SnSe_(2)heterostructure exhibits a significant responsivity of 4.99×10^(3)A∙W^(−1),normalized detectivity of 5.80×10^(12)cm∙Hz^(1/2)∙W^(−1),and fast response time of 3.13 ms,respectively,owing to the built-in electric field.Meanwhile,the highest values of responsivity,normalized detectivity,and response time for the photodetector based on the SnSe/SnSe_(2)heterostructure are 5.91×10^(3)A∙W^(−1),7.03×10^(12)cm∙Hz^(1/2)∙W−1,and 4.74 ms,respectively.And their photodetection performances transcend those of photodetectors based on individual SnSe_(2),SnS,SnSe,and other commonly used 2D materials.Our work has demonstrated an effective strategy to improve the performance of SnSe_(2)-based photodetectors and paves the way for their future commercialization.
基金the National Key R&D Program of China (No.2017YFA0305500)National Natural Science Foundation of China (Nos.61904096,11504207)+3 种基金Taishan Scholars Program of Shandong Province (No.tsqn201812006)Shandong Univ ersity Youth Innovation Supporting Program (No.2019-KJN020)Shandong University Multidisciplinary Research and Innovation Team of Young Scholars (No.2020QNQT015)“Outstanding youth scholar and Qilu young scholar” programs of Shandong University.
文摘High-quality narrow bandgap semiconductors nanowires(NWs)challenge the flexible near-infrared(NIR)photodetectors in next-generation imaging,data communication,environmental monitoring,and bioimaging applications.In this work,complementary metal oxide semiconductor-compatible metal of Ag is deposited on glass as the growth catalyst for the surfactantassisted chemical vapor deposition of GaSb NWs.The uniform morphology,balance stoichiometry,high-quality crystallinity,and phase purity of as-prepared NWs are checked by scanning electron microscopy,energy dispersive X-ray spectroscopy,high-resolution transmission electron microscopy,and X-ray diffraction.The electrical properties of as-prepared NWs are studied by constructing back-gated field-effect-transistors,displaying a high I_(on)/I_(off) ratio of 10^(4) and high peak hole mobility of 400 cm^(2)/(V·s).Benefiting from the excellent electrical and mechanical flexibility properties,the as-fabricated NW flexible NIR photodetector exhibits high sensitivity and excellent photoresponse,with responsivity as high as 618 A/W and detectivity as high as 6.7×10^(10) Jones.Furthermore,there is no obvious decline in NIR photodetection behavior,even after parallel and perpendicular folding with 1200 cycles.
基金the NSF of China(Nos.61574054,61505051,11374092,11204073,61474040,and51302077)the National Basic Research Program of China(No.2012CB932703)+2 种基金the Hunan province science and technology plan(No.2014FJ2001,2014GK3015,and 2014TT1004)the Hunan Provincial Natural Science Foundation of China(No.2015JJ3049)the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In Ga As is an important bandgap-variable ternary semiconductor which has wide applications in electronics and optoelectronics. In this work, single-crystal In Ga As nanowires were synthesized by a chemical vapor deposition method.Photoluminescence measurements indicate the In Ga As nanowires have strong light emission in near-infrared region. For the first time, photodetector based on as-grown In Ga As nanowires was also constructed. It shows good light response over a broad spectral range in infrared region with responsivity of 6.5×10~3 AW^(-1) and external quantum efficiency of 5.04×10~5%. This photodetector may have potential applications in integrated optoelectronic devices and systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.21405109)the Seed Foundation of State Key Laboratory of Precision Measurement Technology and Instruments,China(Pilt No.1710)
文摘Graphene and transition metal dichalcogenides(TMDs), two-dimensional materials, have been investigated wildely in recent years. As a member of the TMD family, MoTe2 possesses a suitable bandgap of ~1.0 eV for near infrared(NIR)photodetection. Here we stack the MoTe2 flake with two graphene flakes of high carrier mobility to form a graphene–MoTe2–graphene heterostructure. It exhibits high photo-response to a broad spectrum range from 500 nm to 1300 nm. The photoresponsivity is calculated to be 1.6 A/W for the 750-nm light under 2 V/0 V drain–source/gate bias, and 154 mA/W for the 1100-nm light under 0.5 V/60 V drain–source/gate bias. Besides, the polarity of the photocurrent under zero Vds can be efficiently tuned by the back gate voltage to satisfy different applications. Finally, we fabricate a vertical graphene–MoTe2–graphene heterostructure which shows improved photoresponsivity of 3.3 A/W to visible light.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61605207, 61704172, and 61705229)the Key Research and Development Plan of the Ministry of Science and Technology of China (Grant No. 2017YFE0131900)+1 种基金the Western Light Program of the Chinese Academy of SciencesYouth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018416)。
文摘High quality PbSe film was first fabricated by a thermal evaporation method, and then the effect of plasma sensitization on the PbSe film was systemically investigated. Typical detectivity and significant photosensitivity are achieved in the PbSe-based photodetector, reaching maximum values of 7.6 × 10^(9)cm·Hz^(1/2)/W and 1.723 A/W, respectively. Compared with thermal annealing, plasma sensitization makes the sensitization easier and significantly improves the performance.
基金supported by the Ministry of Science and Technology of China(No.2022YFA1203303)the National Natural Science Foundation of China(Nos.52072375,52130209,and 52188101)+1 种基金Liaoning Revitalization Talents Program(No.XLYC2002037)the Basic Research Project of Natural Science Foundation of Shandong Province(No.ZR2019ZD49).
文摘Single wall carbon nanotube(SWCNT)/Si heterojunction photodetectors have the advantages of high photoresponse ability and simple structure,however,their detection wavelength range are usually lower than 1100 nm,which limits their application in the infrared band.We report a SWCNT/Cu/Si photodetector with both a high photoresponse and a detection range up to the infrared band by depositing a Cu nanoparticles(NPs)layer between a SWCNT film and a n-Si substrate.It was found that the Cu NPs produce strong surface plasmon resonance(SPR)under laser irradiation,which breaks through the limitation of Si band gap and greatly improves the photoresponse of the SWCNT/Cu/Si photodetector in the near infrared band.The responsivity(R)of the photodetector in the wavelength range of 1850–1200 nm reached 2.2–14.15 mA/W,which is the highest value in the reported plasmon enhanced n-Si based photodetectors,and about 20,000 times higher than that of a SWCNT/Si photodetector.Its R value for 1550 nm wavelength used in optical communications reached~8.2 mA/W,which is 64%higher than the previously reported values of commonly used photodetectors.We attribute the significant increase to the strong SPR and low Schottky barrier of Cu with n-Si,which facilitates the generation and transfer of the carriers.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金the National Natural Science Foundation of China(Nos.11734005,61821002,62075041,12004069,and 62204157)the National Key Research and Development Program of China(Nos.2018YFA0209101 and 2017YFA0700500)the Fundamental Research Funds for the Central Universities(No.2242021k10009).
文摘van der Waals heterostructures(vdWHs)based on two-dimensional(2D)materials without the crystal lattice matching constraint have great potential for high-performance optoelectronic devices.Herein,a WS_(2)/InSe vdWH photodiode is proposed and fabricated by precisely stacking InSe and WS_(2)flakes through an all-dry transfer method.The WS_(2)/InSe vdWH forms an n–n heterojunction with strong built-in electric field due to their intrinsic n-type semiconductor characteristics and energy-band alignments with a large Fermi level offset between WS_(2)and InSe.As a result,the device displays excellent photovoltaic behavior with a large open voltage of 0.47 V and a short-circuit current of 11.7 nA under 520 nm light illumination.Significantly,a fast rising/decay time of 63/76μs,a large light on/off ratio of 105,a responsivity of 61 mA/W,a high detectivity of 2.5×10^(11) Jones,and a broadband photoresponse ranging from ultraviolet to near-infrared(325–980 nm)are achieved at zero bias.This study provides a strategy for developing high-performance self-powered broadband photodetectors based on 2D materials.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金supported by the National Natural Science Foundation of China(U22A2075,U20A20209)the Fundamental Research Funds for the Central Universities(226-2022-00200)the Qianjiang Distinguished Experts program of Hangzhou.
文摘Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.
基金supported by the National Key R&D Program of China,No.2020YFC2004202(to DX).
文摘After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
文摘Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.21975059,22135001,21721002)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)+1 种基金International Partnership Program of the Chinese Academy of Sciences(No.121D11KYSB20190080)Open project of the State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China(No.KFJ202101).
文摘Comprehensive Summary Near infrared light organic photodetectors have attracted tremendous attention due to their tailorable response,ease of processing,compatibility with flexible substrate,room temperature operation and broad applications such as remote sensing,health monitoring,artificial vision,night vision,and so on.Recently,the great improvement obtained on the important figures of merit performances has made organic photodetectors catch up and even surpass those of inorganic photodetectors in some respects.In this review,after a brief illustration of the organic photodetectors'figures of merit performances,we summarize the research progress of panchromatic and narrowband near infrared light organic photodetectors from their working mechanism,strategies to achieve narrowband near infrared light organic photodetectors,to some practical applications.Finally,we discuss the development challenge of the near infrared light organic photodetectors.
基金National Natural Science Foundation of China,Grant/Award Numbers:21788102,03012800001Research Grants Council of Hong Kong,Grant/Award Numbers:16307020,16305518,16305618,C6014-20W+3 种基金Innovation and Technology Commission,Grant/Award Number:ITC-CNERC14SC01Shenzhen Science and Technology Innovation Committee,Grant/Award Numbers:JCYJ20190809172615277,GJHZ20210705143204013Science and Technology Development Fund of Macao SAR,Grant/Award Number:FDCT-0044/2020/A1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515111065。
文摘Organic near-infrared(NIR)photodetectors with essential applications in medical diagnostics,night vision,remote sensing,and optical communications have attracted intensive research interest.Compared with most conventional inorganic counterparts,organic semiconductors usually have higher absorption coefficients,and their thin active layer could be sufficient to absorb most incident light for effective photogeneration.However,due to the relatively poor charge mobility of organic materials,it remains challenging to inhibit the photogenerated exciton recombination and effectively extract carriers to their respective electrodes.Herein,this challenge was addressed by increasing matrix conductivities of a ternary active layer(D–A–D structure NIR absorber[2TT-oC6B]:poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidin[PolyTPD]:[6,6]-phenyl-C61-butyric acid methyl ester[PCBM]=1:1:1)upon in situ incident light illumination,significantly accelerating charge transport through percolated interpenetrating paths.The greatly enhanced photoconductivity under illumination is intrinsically related to the unique donor–acceptor molecular structures of PolyTPD and 2TT-oC6B,whereas stable intermolecular interaction has been verified by systematic molecular dynamics simulation.In addition,an ultrafast charge transfer time of 0.56 ps from the NIR aggregation-induced luminogens of 2TT-oC6B absorber to PolyTPD and PCBM measured by femtosecond transient absorption spectroscopy is beneficial for effective exciton dissociation.The solution-processed organic NIR photodetector exhibits a fast response time of 83μs and a linear dynamic range value of 111 dB under illumination of 830 nm.Therefore,our work has opened up a pioneering window to enhance photoconductivity through in situ photoirradiation and benefit NIR photodetectors as well as other optoelectronic devices.
文摘A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried out on a SOI substrate by using a UHV/CVD SiGe/Si heteroepitaxy technology and a CMOS/SOI process.Biased at 3 0V,the photodetector attained a responsivity of 0 38A/W at its peak response wavelength 0 93μm and exhibited extremely low dark current of less than 1nA,small parasitic capacitance of less than 1 0pF,and short rise time of 2 5ns.The distinct characteristics and process compatibility make it applicable to integrate the photodetector with other silicon based devices to meet the needs of high speed near infrared signal detections.
基金supported by the National Key Research and Development Program of China(Nos.2016YFA0200400 and 2016YFA0302300)the National Science and Technology Major Project of China(No.2016ZX02301001).
文摘The efficient near-infrared light detection of the MoTe2/germanium(Ge)heterojunction has been demonstrated.The fabricated MoTe2/Ge van der Waals heterojunction shows excellent photoresponse performances under the illumination of a 915 nm laser.The photoresponsivity and specific detectivity can reach to 12,460 A/W and 3.3×10^12 Jones,respectively.And the photoresponse time is 5 ms.However,the MoTe2/Ge heterojunction suffers from a large reverse current at dark due to the low barrier between MoTe2 and Ge.Therefore,to reduce the reverse current,an ultrathin GeO2 layer deposited by ozone oxidation has been introduced to the MoTe2/Ge heterojunction.The reverse current of the MoTe2/GeO2/Ge heterojunction at dark was suppressed from 0.44µA/µm^2 to 0.03 nA/µm^2,being reduced by more than four orders of magnitude.The MoTe2/Ge heterojunction with the GeO2 layer also exhibits good photoresponse performances,with a high responsivity of 15.6 A/W,short response time of 5 ms,and good specific detectivity of 4.86×10^11 Jones.These properties suggest that MoTe2/Ge heterostructure is one of the promising structures for the development of high performance near-infrared photodetectors.
基金Supported by the Shandong Province Key R&D Program Project(No.2021LZGC029)the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY010813)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA24030105)the Qingdao Key Technology and Industrialization Demonstration Project(No.22-3-3-hygg-2-hy)the Earmarked Fund for China Agriculture Research System(No.CARS-49)。
文摘Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.21790392).
文摘Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.
基金Project supported by the National Natural Science Foundation of China(11974143,11874181,61822506,U1801253,11904124)the Special Project of the Province-University Co-constructing Program of Jilin Province(SXGJXX2017-3)。
文摘Flexible narrowband near infrared(NIR)photodetectors(PDs)are urgently in demand in the fastdeveloping era of flexible electronics,due to their crucial roles in various innovative applications.Hence,we designed and synthesized the core-shell structured NaYF4:Yb^(3+),Er^(3+)@NaYF4:Nd^(3+)upconversion nanoparticles(UCNPs),which can be pumped by the 808 and 980 nm lights.The upconversion luminescence(UCL)are significantly enhanced after being assembled with the opal photonic crystals(OPCs)due to the photonic crystal effect,with 55 and 48 folds of enhancement factors under illuminations of 808 and 980 nm lights,respectively.Based on this hybrid,the flexible narrowband PDs were successfully fabricated on the PET substrate with the structure of OPCs/NaYF4:Yb^(3+),Er^(3+)@Nd^(3+)/MAPbl3,which displays excellent detection performance to double narrowband NIR light(808 and 980 nm)benefiting from the amplified UCL,with responsivity of 8.79 and 7.39 A/W,detectivity of 3.01×10^(11)and2.68×10^(11)cm·Hz^(1/2)/W for 808 and 980 nm lights detection respectively,along with short response time in the range of 120-160 ms.Furthermore,the OPCs/NaYF4:Yb^(3+),Er^(3+)@NaYF4:Nd^(3+)/MAPbI3 double narrowband PDs display low photodetection power threshold(0.05 W/cm2),outstanding flexibility,prominent moisture resistance,and good long-time stability.This work displays a new concept of narrowband NIR PDs,which open a new field for specific NIR light detections.