Nitrogen(N)monitoring is essential in nurseries to ensure the production of high-quality seedlings.Nearinfrared spectroscopy(NIRS)is an instantaneous,nondestructive method to monitor N.Spectral data such as NIRS can a...Nitrogen(N)monitoring is essential in nurseries to ensure the production of high-quality seedlings.Nearinfrared spectroscopy(NIRS)is an instantaneous,nondestructive method to monitor N.Spectral data such as NIRS can also provide the basis for developing a new vegetation spectral index(VSI).Here,we evaluated whether NIRS combined with statistical modeling can accurately detect early variations in N concentration in leaves of young plants of Annona emargiaata and developed a new VSI for this task.Plants were grown in a hydroponics system with 0,2.75,5.5or 11 mM N for 45 days.Then we measured gas exchange,chlorophylla fluorescence,and pigments in leaves;analyzed complete leaf nutrients,and recorded spectral data for leaves at 966 to 1685 nm using NIRS.With a statistical learning approach,the dimensionality of the spectral data was reduced,then models were generated using two classes(N deficiency,N)or four classes(0,2.75,5.5,11 mM N).The best combination of techniques for dimensionality reduction and classification,respectively,was stepwise regression(PROC STEPDISC)and linear discriminant function.It was possible to detect N deficiency in seedlings leaves with 100%precision,and the four N concentrations with93.55%accuracy before photosynthetic damage to the plant occurred.Thereby,NIRS combined with statistical modeling of multidimensional data is effective for detecting N variations in seedlings leaves of A.emarginata.展开更多
OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three c...OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three countries were identified using near-infrared(NIR)spectroscopy combined with chemometric techniques.Principal component analysis(PCA)was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories.A classical chemometric algorithm(PLS-DA)and two machine learning algorithms[K-nearest neighbor(KNN)and support vector machine]were used to conduct a classification analysis of the near-infrared spectra of the Moyao(Myrrh)samples,and their discriminative performance was evaluated.RESULTS:Based on the accuracy,precision,recall rate,and F1 value in each model,the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results.In all of the chemometric analyses,the NIR spectrum of Moyao(Myrrh)preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins,and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best.The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively.CONCLUSIONS:NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao(Myrrh)and can also provide a reference for evaluations of its quality and the clinical use.展开更多
We have examined ten human subjects with a previously developed instrument for near-infrared diffuse spectral imaging of the female breast.The instrument is based on a tandem,planar scan of two collinear optical fiber...We have examined ten human subjects with a previously developed instrument for near-infrared diffuse spectral imaging of the female breast.The instrument is based on a tandem,planar scan of two collinear optical fibers(one for illumination and one for collection)to image a gently compressed breast in a transmission geometry.The optical data collection features a spatial sampling of 25 points/cm2 over the whole breast,and a spectral sampling of 2 points/nm in the 650-900nm wavelength range.Of the ten human subjects examined,eight are healthy subjects and two are cancer patients with unilateral invasive ductal carcinoma and ductal carcinoma in situ,respectively.For each subject,we generate second-derivative images that identify a network of highly absorbing structures in the breast that we assign to blood vessels.A previously developed paired-wavelength spectral method assigns oxygenation values to the absorbing structures displayed in the second-derivative images.The resulting oxygenation images feature average values over the whole breast that are significantly lower in cancerous breasts(69±14%,n=2)than in healthy breasts(85±7%,n=18)(p<0.01).Furthermore,in the two patients with breast cancer,the average oxygenation values in the cancerous regions are also significantly lower than in the remainder of the breast(invasive ductal carcinoma:49±11%vs 61±16%,p<0.01;ductal carcinoma in situ:58±8%vs 77±11%,p<0.001).展开更多
Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interfe...Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interference caused by inconsistency between light sources, the novel evaluation indicators for global stability of multi-channels spectral system were proposed based on the correlation between dynamic deviation spectra of any two channels. The NIR analysis of moisture for corn powder samples based on the partial least squares combined with Savitzky-Golay (SG) smoothing was taken as an example, and a spectral correction method for enhancing prediction performance of multi-channels spectral system was further provided using above evaluation indicators. The experiment results showed that the global stability evaluation indicators significantly increased after SG smoothing correction. Meanwhile, the root-mean-square errors of prediction for corn moisture reduced from 0.373 to 0.283 (%), and the correlation coefficient between predicted and actual values was improved from 0.702 to 0.855. The above results indicated that by improving global stability indicators, the prediction ability of multi-channels spectral system can be improved. The proposed method provided a valuable reference for designing multi-channels diminutive spectrometer with high prediction performance, which had significance for large-scale application of NIR technology.展开更多
Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stabi...Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stability. A large-scale parameter cyclic and global optimization platform for Norris derivative filter (NDF) of three parameters (the derivative order: d, the number of smoothing points: s and the number of differential gaps: g) was developed with PLS regression. Meantime, the parameters’ adaptive analysis of NDF algorithm was also given, and achieved a significantly better modeling effect than one without spectral pre-processing. After eliminating the interference wavebands of saturated absorption, the modeling performance was further improved. In validation, the root mean square error (SEP), correlation coefficient (RP) for prediction and the ratio of performance to deviation (RPD) were 1.66 mmol?L-1, 0.966 and 4.7, respectively. The results showed that the high-precision analysis of SUN was feasibility based on NIR spectroscopy and Norris-PLS. The global optimization method of NDF is also expected to be applied to other analysis objects.展开更多
In this paper,we propose a near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide(β-FeSi2) as the active region for the first time.The optoelectronic characteristics o...In this paper,we propose a near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide(β-FeSi2) as the active region for the first time.The optoelectronic characteristics of the photodetector are simulated using a commercial simulator at room temperature.The results show that the photodetector has a good rectifying character and a good response to near-infrared light.Interface states should be minimized to obtain a lower reverse leakage current.The response spectrum of the β-FeSi2/4H-SiC detector,which consists of a p-type β-FeSi2 absorption layer with a doping concentration of 1×1015cm-3 and a thickness of 2.5 μm,has a peak of 755 mA/W at 1.42 μm.The illumination of the SiC side obtains a higher responsivity than that of the β-FeSi2 side.The results illustrate that the β-FeSi2/4H-SiC heterojunction can be used as a near-infrared photodetector compatible with near-infrared optically-activated SiC-based power switching devices.展开更多
As unsafe components in herbal medicine(HM),saccharides can affect not only the drug appearance and stabilization,but also the drug efficacy and safety.The present study focuses on the in-line monitoring of batch alco...As unsafe components in herbal medicine(HM),saccharides can affect not only the drug appearance and stabilization,but also the drug efficacy and safety.The present study focuses on the in-line monitoring of batch alcohol precipitation processes for saccharide removal using nearinfrared(NIR)spectroscopy.NIR spectra in the 4000–10,000-cm^(-1)wavelength range are acquired in situ using a transflectance probe.These directly acquired spectra allow characterization of the dynamic variation tendency of saccharides during alcohol precipitation.Calibration models based on partial least squares(PLS)regression have been developed for the three saccharide impurities,namely glucose,fructose,and sucrose.Model errors are estimated as the root-meansquare errors of cross-validation(RMSECVs)of internal validation and root-mean-square errors of prediction(RMSEPs)of external validation.The RMSECV values of glucose,fructose,and sucrose were 1.150,1.535,and 3.067 mg·mL^(-1),and the RMSEP values were 0.711,1.547,and 3.740 mg·mL^(-1),respectively.The correlation coeffcients(r)between the NIR predictive and the reference measurement values were all above 0.94.Furthermore,NIR predictions based on the constructed models improved our understanding of sugar removal and helped develop a control strategy for alcohol precipitation.The results demonstrate that,as an alternative process analytical technology(PAT)tool for monitoring batch alcohol precipitation processes,NIR spectroscopy is advantageous for both efficient determination of quality characteristics(fast,in situ,and requiring no toxic reagents)and process stability,and evaluating the repeatability.展开更多
Objective:We applied hyperspectral imaging(HSI)system to distinguish early caries from soundand pigmented areas.It will provide a theoretical basis and technical support,for research anddevelopment of an instrument th...Objective:We applied hyperspectral imaging(HSI)system to distinguish early caries from soundand pigmented areas.It will provide a theoretical basis and technical support,for research anddevelopment of an instrument that could be used for screening and detection of early dentalcaries.Methods:Eighteen extracted human teeth(molars and premolars),with varying degrees ofnatural pathology and no degree of decay involving dentin were obtained.HSI system with awavelength range from 400 to 1000nm was used to obtain images of all 18 teeth containingsound,carious and pigmented areas.We compared the spectra of the wavebands at both 500 nmand 780 nm from the different tooth states,and the reflectance diference bet ween sound versuscarious lesions and sound versus pigmented areas,respectively.Results:There was a slight diference in refectance bet ween carious areas and pigmented areas at500 nm.A substantial difference was additionally noted in refectance bet ween carious areas andpigmented areas at 780 nm.Conclusion:The results have shown that the interference of tooth surface pigment can be elim-inated in the near-infrared(NIR)waveband,and the caries can be effectively identifed from the pigmented areas.Thus,it could be used to detect carious areas of teeth in place of the traditionalvisual inspection method or white light endoscopy.Clinical significance:The NIR difused light signal enables the identification of early caries frompigment and other interference,providing a reasonable detection tool for early detection andearly treatment of teeth diseases.展开更多
基金a scholarship from Capes(Coordena??o de Aperfei?oamento de Pessoal de Nível Superior)-Brazil(Award number:001)for the first author。
文摘Nitrogen(N)monitoring is essential in nurseries to ensure the production of high-quality seedlings.Nearinfrared spectroscopy(NIRS)is an instantaneous,nondestructive method to monitor N.Spectral data such as NIRS can also provide the basis for developing a new vegetation spectral index(VSI).Here,we evaluated whether NIRS combined with statistical modeling can accurately detect early variations in N concentration in leaves of young plants of Annona emargiaata and developed a new VSI for this task.Plants were grown in a hydroponics system with 0,2.75,5.5or 11 mM N for 45 days.Then we measured gas exchange,chlorophylla fluorescence,and pigments in leaves;analyzed complete leaf nutrients,and recorded spectral data for leaves at 966 to 1685 nm using NIRS.With a statistical learning approach,the dimensionality of the spectral data was reduced,then models were generated using two classes(N deficiency,N)or four classes(0,2.75,5.5,11 mM N).The best combination of techniques for dimensionality reduction and classification,respectively,was stepwise regression(PROC STEPDISC)and linear discriminant function.It was possible to detect N deficiency in seedlings leaves with 100%precision,and the four N concentrations with93.55%accuracy before photosynthetic damage to the plant occurred.Thereby,NIRS combined with statistical modeling of multidimensional data is effective for detecting N variations in seedlings leaves of A.emarginata.
基金Jiangxi Provincial Administration of Traditional Chinese Medicine Key Research Laboratory on the Fundamentals of Chinese Medicine Evidence(Gan TCM Science and Education Word[2022]No.8-4)Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program:Traditional Chinese Medicine Constitution-State Identification Health Management Research Team(No.CXTD22016)。
文摘OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three countries were identified using near-infrared(NIR)spectroscopy combined with chemometric techniques.Principal component analysis(PCA)was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories.A classical chemometric algorithm(PLS-DA)and two machine learning algorithms[K-nearest neighbor(KNN)and support vector machine]were used to conduct a classification analysis of the near-infrared spectra of the Moyao(Myrrh)samples,and their discriminative performance was evaluated.RESULTS:Based on the accuracy,precision,recall rate,and F1 value in each model,the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results.In all of the chemometric analyses,the NIR spectrum of Moyao(Myrrh)preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins,and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best.The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively.CONCLUSIONS:NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao(Myrrh)and can also provide a reference for evaluations of its quality and the clinical use.
基金supported by the National Institutes of Health,Grant CA95885.
文摘We have examined ten human subjects with a previously developed instrument for near-infrared diffuse spectral imaging of the female breast.The instrument is based on a tandem,planar scan of two collinear optical fibers(one for illumination and one for collection)to image a gently compressed breast in a transmission geometry.The optical data collection features a spatial sampling of 25 points/cm2 over the whole breast,and a spectral sampling of 2 points/nm in the 650-900nm wavelength range.Of the ten human subjects examined,eight are healthy subjects and two are cancer patients with unilateral invasive ductal carcinoma and ductal carcinoma in situ,respectively.For each subject,we generate second-derivative images that identify a network of highly absorbing structures in the breast that we assign to blood vessels.A previously developed paired-wavelength spectral method assigns oxygenation values to the absorbing structures displayed in the second-derivative images.The resulting oxygenation images feature average values over the whole breast that are significantly lower in cancerous breasts(69±14%,n=2)than in healthy breasts(85±7%,n=18)(p<0.01).Furthermore,in the two patients with breast cancer,the average oxygenation values in the cancerous regions are also significantly lower than in the remainder of the breast(invasive ductal carcinoma:49±11%vs 61±16%,p<0.01;ductal carcinoma in situ:58±8%vs 77±11%,p<0.001).
文摘Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interference caused by inconsistency between light sources, the novel evaluation indicators for global stability of multi-channels spectral system were proposed based on the correlation between dynamic deviation spectra of any two channels. The NIR analysis of moisture for corn powder samples based on the partial least squares combined with Savitzky-Golay (SG) smoothing was taken as an example, and a spectral correction method for enhancing prediction performance of multi-channels spectral system was further provided using above evaluation indicators. The experiment results showed that the global stability evaluation indicators significantly increased after SG smoothing correction. Meanwhile, the root-mean-square errors of prediction for corn moisture reduced from 0.373 to 0.283 (%), and the correlation coefficient between predicted and actual values was improved from 0.702 to 0.855. The above results indicated that by improving global stability indicators, the prediction ability of multi-channels spectral system can be improved. The proposed method provided a valuable reference for designing multi-channels diminutive spectrometer with high prediction performance, which had significance for large-scale application of NIR technology.
文摘Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stability. A large-scale parameter cyclic and global optimization platform for Norris derivative filter (NDF) of three parameters (the derivative order: d, the number of smoothing points: s and the number of differential gaps: g) was developed with PLS regression. Meantime, the parameters’ adaptive analysis of NDF algorithm was also given, and achieved a significantly better modeling effect than one without spectral pre-processing. After eliminating the interference wavebands of saturated absorption, the modeling performance was further improved. In validation, the root mean square error (SEP), correlation coefficient (RP) for prediction and the ratio of performance to deviation (RPD) were 1.66 mmol?L-1, 0.966 and 4.7, respectively. The results showed that the high-precision analysis of SUN was feasibility based on NIR spectroscopy and Norris-PLS. The global optimization method of NDF is also expected to be applied to other analysis objects.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60876050 and 51177134)
文摘In this paper,we propose a near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide(β-FeSi2) as the active region for the first time.The optoelectronic characteristics of the photodetector are simulated using a commercial simulator at room temperature.The results show that the photodetector has a good rectifying character and a good response to near-infrared light.Interface states should be minimized to obtain a lower reverse leakage current.The response spectrum of the β-FeSi2/4H-SiC detector,which consists of a p-type β-FeSi2 absorption layer with a doping concentration of 1×1015cm-3 and a thickness of 2.5 μm,has a peak of 755 mA/W at 1.42 μm.The illumination of the SiC side obtains a higher responsivity than that of the β-FeSi2 side.The results illustrate that the β-FeSi2/4H-SiC heterojunction can be used as a near-infrared photodetector compatible with near-infrared optically-activated SiC-based power switching devices.
基金the State Administration of Traditional Chinese Medicine of Zhejiang Province Project(No.2015ZQ022)the Zhejiang TCM Health Science and Technology Project(No.2015KYB110).
文摘As unsafe components in herbal medicine(HM),saccharides can affect not only the drug appearance and stabilization,but also the drug efficacy and safety.The present study focuses on the in-line monitoring of batch alcohol precipitation processes for saccharide removal using nearinfrared(NIR)spectroscopy.NIR spectra in the 4000–10,000-cm^(-1)wavelength range are acquired in situ using a transflectance probe.These directly acquired spectra allow characterization of the dynamic variation tendency of saccharides during alcohol precipitation.Calibration models based on partial least squares(PLS)regression have been developed for the three saccharide impurities,namely glucose,fructose,and sucrose.Model errors are estimated as the root-meansquare errors of cross-validation(RMSECVs)of internal validation and root-mean-square errors of prediction(RMSEPs)of external validation.The RMSECV values of glucose,fructose,and sucrose were 1.150,1.535,and 3.067 mg·mL^(-1),and the RMSEP values were 0.711,1.547,and 3.740 mg·mL^(-1),respectively.The correlation coeffcients(r)between the NIR predictive and the reference measurement values were all above 0.94.Furthermore,NIR predictions based on the constructed models improved our understanding of sugar removal and helped develop a control strategy for alcohol precipitation.The results demonstrate that,as an alternative process analytical technology(PAT)tool for monitoring batch alcohol precipitation processes,NIR spectroscopy is advantageous for both efficient determination of quality characteristics(fast,in situ,and requiring no toxic reagents)and process stability,and evaluating the repeatability.
基金supported by the National Natural Science Foundation of China 62175153the Shanghai Science and Technology Commission 21S902700.
文摘Objective:We applied hyperspectral imaging(HSI)system to distinguish early caries from soundand pigmented areas.It will provide a theoretical basis and technical support,for research anddevelopment of an instrument that could be used for screening and detection of early dentalcaries.Methods:Eighteen extracted human teeth(molars and premolars),with varying degrees ofnatural pathology and no degree of decay involving dentin were obtained.HSI system with awavelength range from 400 to 1000nm was used to obtain images of all 18 teeth containingsound,carious and pigmented areas.We compared the spectra of the wavebands at both 500 nmand 780 nm from the different tooth states,and the reflectance diference bet ween sound versuscarious lesions and sound versus pigmented areas,respectively.Results:There was a slight diference in refectance bet ween carious areas and pigmented areas at500 nm.A substantial difference was additionally noted in refectance bet ween carious areas andpigmented areas at 780 nm.Conclusion:The results have shown that the interference of tooth surface pigment can be elim-inated in the near-infrared(NIR)waveband,and the caries can be effectively identifed from the pigmented areas.Thus,it could be used to detect carious areas of teeth in place of the traditionalvisual inspection method or white light endoscopy.Clinical significance:The NIR difused light signal enables the identification of early caries frompigment and other interference,providing a reasonable detection tool for early detection andearly treatment of teeth diseases.